Linear algebra |
ter |
|||||
Teaching Staff in Charge |
Prof. CALUGAREANU Grigore, Ph.D., calu@math.ubbcluj.ro Prof. MARCUS Andrei, Ph.D., marcus@math.ubbcluj.ro Lect. SACAREA Cristian, Ph.D., csacarea@math.ubbcluj.ro |
Aims |
Notions and results concerning linear algebra. |
Content |
The course presents elements of Linear Algebra: linear maps and matrices; change of bases-automorphisms; eigenvectors and eigenvalues, eigenspaces; diagonalizable and triangulable matrices; Jordan canonical form; hermitian and quadratic forms; unitary, hermitian and anti-hermitian matrices; spectral theorem; Sylvester's law of inertia; linear systems of equations: compatibility, Kronecker-Capelli and Rouche theorems. |
References |
1. G. Pic, Purdea, Tratat de algebra moderna, vol.1, Editura Academiei, 1977.
2. I. Purdea, Tratat de algebra moderna, vol.2, Editura Academiei, 1982. 3. G. Calugareanu, lectii de algebra liniara, Litografiat Univ. Babes-Bolyai, 1995. 4. I. D. Ion, N. Radu, Algebra (ed.3-a), Editura Didactica si Pedagogica, 1981. 5. N. Bourbaki, Algebre, chap.1 -3, Editura Hermann, 1970. 6. L. Salce, Lezioni di Algebra lineare due, edizione ridotta, Decibel-Zanichelli, 1992. |
Assessment |
Exam. |