"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science


Curriculum for
Academic Year 2002/2003

Mathematics

Semester 1

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MA001 Basic algebraic structures
2+2+0
E
6 cr.
MA005 Mathematical logic and set theory
2+2+0
E
6 cr.
MO001 Mathematical analysis (1)
2+2+0
E
6 cr.
MO030 Metrical spaces
2+1+0
E
5 cr.
MI001 Algorithms
2+2+2
E
7 cr.
TOTAL
10+9+2=21
 
30 cr.
Other Compulsory Courses:
XL001 Foreign language (1)
0+2+0
C
2.5 cr.
XK021 Sports (1)
0+2+0
C
-
Facultative Courses:
XL005 Second foreign language (1)
0+2+0
C
2.5 cr.
MI083 Computer interface and communication in Internet
2+0+1
C
2.5 cr.

Semester 2

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MA002 Linear algebra
2+2+0
E
6 cr.
MO002 Mathematical analysis (2)
2+2+0
E
6 cr.
MG001 Curves and surfaces
2+1+0
E
5 cr.
MG020 Analytical geometry
2+2+0
E
5 cr.
MI074 Object oriented programming
2+2+2
E
8 cr.
TOTAL
10+9+2=21
 
30 cr.
Other Compulsory Courses:
XL002 Foreign language (2)
0+2+0
C
2.5 cr.
XK022 Sports (2)
0+2+0
C
-
Facultative Courses:
XL006 Second foreign language (2)
0+2+0
C
2.5 cr.
Y001 Psychology of education
2+2+0
C
4 cr.

Semester 3

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MA003 Rings and fields
2+2+0
E
6 cr.
MO003 Mathematical analysis (3)
2+2+0
E
6 cr.
MG002 Affin geometry
2+1+0
E
6 cr.
MT003 Complex analysis (1)
2+2+0
E
6 cr.
ME001 Ordinary differential equations and dynamical systems (1)
2+2+0
E
6 cr.
TOTAL
10+9+0=19
 
30 cr.
Other Compulsory Courses:
XL003 Foreign language (3)
0+2+0
C
2.5 cr.
XK023 Sports (3)
0+2+0
C
-
Facultative Courses:
XL007 Second foreign language (3)
0+2+0
C
2.5 cr.
Y004 Introduction in pedagogy. Theory and methodology of curriculum
2+1+0
C
4 cr.

Semester 4

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MT001 Real analysis (1)
2+2+0
E
6 cr.
MG003 Differential manifolds
2+2+0
E
6 cr.
MM001 Theoretical mechanics (1)
2+2+0
E
6 cr.
MS001 Optional course 1
2+2+0
E
6 cr.
MS002 Optional course 2
2+2+0
E
6 cr.
TOTAL
10+10+0=20
 
30 cr.
Other Compulsory Courses:
XL004 Foreign language (4)
0+2+0
C
2.5 cr.
XK024 Sports (4)
0+2+0
C
-
Facultative Courses:
XL008 Second foreign language (4)
0+2+0
C
2.5 cr.
Y005 Theory and methodology of instruction. Theory and methodology of evaluation
2+1+0
C
4 cr.
Subjects for optional courses 1 and 2.
Package with subjects in romanian language:
MA004 Galois theory and universal algebras
2+2+0
6 cr.
ME002 Ordinary differential equations and dynamical systems (2)
2+2+0
6 cr.
MO031 Mathematical analysis (4)
2+2+0
6 cr.
MT004 Complex analysis (2)
2+2+0
6 cr.
Package with subjects in hungarian language:
MA004 Galois theory and universal algebras
2+2+0
6 cr.
ME002 Ordinary differential equations and dynamical systems (2)
2+2+0
6 cr.
MO031 Mathematical analysis (4)
2+2+0
6 cr.
MT004 Complex analysis (2)
2+2+0
6 cr.

Semester 5

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MO004 Functional analysis (1)
2+2+0
E
6 cr.
ME003 Partial differential equations (1)
2+2+0
E
6 cr.
MC001 Numerical analysis (1)
2+2+2
E
6 cr.
MS003 Optional course 3
2+1+0
E
6 cr.
MS004 Optional course 4
2+1+0
E
6 cr.
TOTAL
10+8+2=20
 
30 cr.
Facultative Courses:
Y011 Didactics of Mathematics
2+1+0
C
3 cr.
Subjects for optional courses 3 and 4.
Package with subjects in romanian language:
MG004 Riemannian geometry
2+1+0
6 cr.
MM002 Theoretical mechanics (2)
2+1+0
6 cr.
MT002 Real analysis (2)
2+1+0
6 cr.
Package with subjects in hungarian language:
MG022 Noneuclidean geometry
2+1+0
6 cr.
MM002 Theoretical mechanics (2)
2+1+0
6 cr.
MT002 Real analysis (2)
2+1+0
6 cr.

Semester 6

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MC003 Probability theory
2+2+0
E
5 cr.
MI038 Birotics
2+0+2
E
5 cr.
MM003 Astronomy
2+1+1
E
5 cr.
MS005 Optional course 5
2+1+0
E
5 cr.
MS006 Optional course 6
2+1+0
E
5 cr.
MS007 Optional course 7
2+1+0
C
5 cr.
TOTAL
12+6+3=21
 
30 cr.
Facultative Courses:
Y015 Practice of education - Mathematics
0+4+0
C
5 cr.
Y017 Optional subject psihopedagogy
1+2+0
C
3.5 cr.
Subjects for optional course 5.
Package with subjects in romanian language:
ME004 Partial differential equations (2)
2+1+0
5 cr.
MO005 Functional analysis (2)
2+1+0
5 cr.
Package with subjects in hungarian language:
ME004 Partial differential equations (2)
2+1+0
5 cr.
MO005 Functional analysis (2)
2+1+0
5 cr.
Subjects for optional course 6.
Package with subjects in romanian language:
MC002 Numerical analysis (2)
2+1+0
5 cr.
MG005 Calculus on manifolds
2+1+0
5 cr.
Package with subjects in romanian language:
MC002 Numerical analysis (2)
2+1+0
5 cr.
MG005 Calculus on manifolds
2+1+0
5 cr.
Subjects for optional course 7.
Package with subjects in romanian language:
MM005 Selected topics of mechanics
2+1+0
5 cr.
MT005 Special topics of function theory
2+1+0
5 cr.
Package with subjects in hungarian language:
MM005 Selected topics of mechanics
2+1+0
5 cr.
MT005 Special topics of function theory
2+1+0
5 cr.

Semester 7

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MO006 Operations research
2+2+0
E
6 cr.
MC004 Mathematical statistics
2+2+1
E
6 cr.
MS008 Optional course 8
2+2+0
C
6 cr.
MS009 Optional course 9
2+2+0
C
6 cr.
MS010 Optional course 10
2+2+0
C
6 cr.
TOTAL
10+10+1=21
 
30 cr.
Facultative Courses:
Y018 Optional subject sociopedagogy
1+2+0
C
3.5 cr.
MA006 History of mathematics
2+0+0
C
3 cr.
Subjects for optional courses 8,9 and 10.
Package 1:
MA008 Theory of categories
2+2+0
6 cr.
MA013 Abelian groups
2+2+0
6 cr.
Package 2:
MG007 The foundation of geometry
2+2+0
6 cr.
MG012 Lie groups and Lie algebras
2+2+0
6 cr.
Package 3:
ME005 Fixed point theory
2+2+0
6 cr.
ME012 Mathematical modelling
2+2+0
6 cr.
Package 4 (with subjects in hungarian language):
ME043 Discrete transformations
2+2+0
6 cr.
MG007 The foundation of geometry
2+2+0
6 cr.
MM025 Numerical methods in mechanics
2+2+0
6 cr.
MO009 Supplement of mathematica analysis
2+2+0
6 cr.
MT025 General topology
2+2+0
6 cr.
MT030 Geometric function theory
2+2+0
6 cr.

Semester 8

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MS011 Optional course 11
2+2+0
E
7.5 cr.
MS012 Optional course 12
2+2+0
E
7.5 cr.
MS013 Optional course 13
2+2+0
E
7.5 cr.
MS014 Optional course 14
2+2+0
E
7.5 cr.
TOTAL
8+8+0=16
 
30 cr.
Facultative Courses:
MS101 Organization, argumenting and proving in Mathematics
2+0+0
C
3 cr.
Subjects for optional courses 11,12,13 and 14.
Package 1:
MO010 Numerical solutions of equations
2+2+0
7.5 cr.
MO046 Decision theory
2+2+0
7.5 cr.
Package 2:
MT021 Topics in the geometry of Banach spaces
2+2+0
7.5 cr.
MT026 Differentiability for convex functions
2+2+0
7.5 cr.
Package 3:
MC017 Numerical integration of the functions
2+2+0
7.5 cr.
MC029 Multivariate approximations
2+2+0
7.5 cr.
Package 4:
MM014 Computational methods in fluid mechanics
2+2+0
7.5 cr.
MM021 Boundary integral methods in fluid mechanics
2+2+0
7.5 cr.
Package 5 ( with subjects in hungarian language):
MA025 Algebraic number theory
2+2+0
7.5 cr.
MG021 Projective geometry
2+2+0
7.5 cr.
MO044 Convex functions
2+2+0
7.5 cr.
MO048 Genesis of some analysis notions
2+2+0
7.5 cr.
MT031 Convex operators
2+2+0
7.5 cr.
Package 6 ( with subjects in hungarian language):
ME039 Discrete and reccurence equations
2+2+0
7.5 cr.
ME041 Nonlinear analysis
2+2+0
7.5 cr.
ME042 Selected topics of partial differential equations
2+2+0
7.5 cr.
MM006 Selected topics of Astronomy
2+2+0
7.5 cr.
MO016 Optimization theory
2+2+0
7.5 cr.