Universitatea "Babeş-Bolyai" din Cluj-Napoca

Facultatea de Matematică şi Informatică
FISA DISCIPLINEI

Capitole speciale de cercetări operaţionale Selected topics in operations research
Cod
Semes-
trul
Ore: C+S+L
Credite
Tipul
Sectia
MO014
7
2+1+0
0
optionala
Matematica Economica
(Mathematics Economics)
MO014
8
2+2+0
10
optionala
Informatică
(Computer Science)
MO014
8
2+1+0
7,5
optionala
Matematică
(Mathematics)
Cadre didactice indrumatoare Teaching Staff in Charge
Conf. Dr. KASSAY Gabor, kassay@math.ubbcluj.ro
Conf. Dr. LUPŞA Liana, llupsa@math.ubbcluj.ro
Obiective Aims
Prezentarea unor rezultate de baza din urmatoarele ramuri ale cercetarilor operationale: programarea in variabile intregi, programarea parametrica, programare dinamica, programarea vectoriala, programarea fractionara si a unor metode recente de rezolvare a problemelor de programare liniara .
Presentation of the main notions and results about: integer optimization, parametric optimization, dynamic optimization, vectorial optimization, fractional optimization and a new methods for solving linear programming problems.
Continut
1. Programare in variabile intregi; programare pseudobooleana (nr.ore: 6 ore curs + 6 ore seminar);
2. Programare parametrica - cazul liniar (nr.ore: 4 ore curs + 4 ore seminar);
3. Probleme de programare fractionara (nr.ore: 4 ore curs + 4 ore seminar);
4. Puncte de vedere in abordarea problemelor de programare vectoriala (nr.ore: 8 ore curs + 8 ore sem.);
5. Citeva aspecte legate de studiul problemelor de programare dinamica (nr.ore: 6 ore curs + 6 ore sem.).
Bibliografie
1. BACIU A., PASCU A., PUSCAS E.: Aplicatii ale cercetarii operationale. Bucuresti, Editura Militara, 1988.
2. GALPERIN G. A.: Nonscalarized Multiobjective Global Optimization. J.O.T.A., 75 (1992), 1, 69-85.
3. KARMARKAR N., A new polynomial time algorithm for linear programming, Combinatorica, 4 (1984), 372-395.
3. KARMARKAR N., RAMAKRISHNAN K.G., Computational Results of an interior point algorithm for large scale linear programming, Mathematical Programming, 52 (1991), 555-586.
4. KHACHIAN L.G., A polynomial algorithm in linear programming. Doklady Akademii Nauk SSSR, 244 (1979), 1093-1096.
5. LUPSA L.: On the relationship between efficient points and d-bases. "Babes-Bolyai" University, Cluj-Napoca, Faculty of Mathematics. Research seminars. Seminar of Mathematical Analysis. Preprint nr. 7, 1992, 87-100.
6. SAWARAGI Y., NAKAYAMA H., TANINO T.: Theory of Multiobjective Optimization. San Diego - New York - London - Toronto - Montreal - Tokyo, Academic Press, 1985.
7. STANCU-MINASIAN I.M. Metode de rezolvare a problemelor de programare fractionara. Editura Academiei Rombne, Bucuresti, 1992.
8. TAHA H.A., Integer programming, theory, applications and computations. New York - San Francisco - London: Academic Press 1975.
9. ZAK S.H., UPATISING V., HUI S., Solving linear programming problems with neuronal networks: A comparative study, IEEE Transaction on Neural Networks, 6, 1 (1995), 94-103.
Evaluare Assessment
Examen.
Exam.