"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science


Curriculum for
Academic Year 2000/2001

Mathematics

Semester 1

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MO030 Metrical spaces
2+1+0
E
5 cr.
MO001 Mathematical analysis (1)
2+2+0
E
6 cr.
MI001 Algorithms
2+2+2
E
7 cr.
MA005 Mathematical logic and set theory
2+2+0
E
6 cr.
MA001 Basic algebraic structures
2+2+0
E
6 cr.
TOTAL
10+9+2=21
 
30 cr.
Other Compulsory Courses:
XK021 Sports (1)
0+2+0
C
-
XL001 Foreign language (1)
0+2+0
C
2.5 cr.
Facultative Courses:
XL005 Second foreign language (1)
0+2+0
C
2.5 cr.

Semester 2

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MO002 Mathematical analysis (2)
2+2+0
E
6 cr.
MI002 Programming
2+2+2
E
8 cr.
MG020 Analytical geometry
2+1+0
E
5 cr.
MG001 Curves and surfaces
2+1+0
E
5 cr.
MA002 Linear algebra
2+2+0
E
6 cr.
TOTAL
10+8+2=20
 
30 cr.
Other Compulsory Courses:
XK022 Sports (2)
0+2+0
C
-
XL002 Foreign language (2)
0+2+0
C
2.5 cr.
Facultative Courses:
XL006 Second foreign language (2)
0+2+0
C
2.5 cr.
Y001 Psychology of education
2+1+0
C
4 cr.

Semester 3

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MA003 Rings and fields
2+2+0
E
6 cr.
ME001 Ordinary differential equations and dynamical systems (1)
2+2+0
E
6 cr.
MG002 Affin geometry
2+2+0
E
6 cr.
MO003 Mathematical analysis (3)
2+2+0
E
6 cr.
MT003 Complex analysis (1)
2+2+0
E
6 cr.
TOTAL
10+10+0=20
 
30 cr.
Other Compulsory Courses:
XK023 Sports (3)
0+2+0
C
-
XL003 Foreign language (3)
0+2+0
C
2.5 cr.
Facultative Courses:
XL007 Second foreign language (3)
0+2+0
C
2.5 cr.
Y002 General pedagogy (1)
2+1+0
C
4 cr.

Semester 4

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MG003 Differential manifolds
2+2+0
E
6 cr.
MM001 Theoretical mechanics (1)
2+2+0
E
6 cr.
MT001 Real analysis (1)
2+2+0
E
6 cr.
MS001 Optional course 1
2+2+0
E
6 cr.
MS002 Optional course 2
2+2+0
E
6 cr.
TOTAL
10+10+0=20
 
30 cr.
Other Compulsory Courses:
XK024 Sports (4)
0+2+0
C
-
XL004 Foreign language (4)
0+2+0
C
2.5 cr.
Facultative Courses:
XL008 Second foreign language (4)
0+2+0
C
2.5 cr.
Y003 General pedagogy (2)
2+1+0
C
4 cr.
Subjects for optional courses 1 and 2.
Package with subjects in romanian language:
MA004 Galois theory and universal algebras
2+2+0
6 cr.
ME002 Ordinary differential equations and dynamical systems (2)
2+2+0
6 cr.
MO031 Mathematical analysis (4)
2+2+0
6 cr.
MT004 Complex analysis (2)
2+2+0
6 cr.
Package with subjects in hungarian language:
MA004 Galois theory and universal algebras
2+2+0
6 cr.
ME002 Ordinary differential equations and dynamical systems (2)
2+2+0
6 cr.
MO031 Mathematical analysis (4)
2+2+0
6 cr.
MT004 Complex analysis (2)
2+2+0
6 cr.

Semester 5

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MC001 Numerical analysis (1)
2+2+2
E
6 cr.
ME003 Partial differential equations (1)
2+2+0
E
6 cr.
MO004 Functional analysis (1)
2+2+0
E
6 cr.
MS003 Optional course 3
2+1+0
E
6 cr.
MS004 Optional course 4
2+1+0
E
6 cr.
TOTAL
10+8+2=20
 
30 cr.
Facultative Courses:
Y011 Didactics of Mathematics
2+0+0
C
3 cr.
Subjects for optional courses 3 and 4.
Package with subjects in romanian language:
MG004 Riemannian geometry
2+1+0
6 cr.
MM002 Theoretical mechanics (2)
2+1+0
6 cr.
MT002 Real analysis (2)
2+1+0
6 cr.
Package with subjects in hungarian language:
MG004 Riemannian geometry
2+1+0
6 cr.
MM002 Theoretical mechanics (2)
2+1+0
6 cr.
MT002 Real analysis (2)
2+1+0
6 cr.

Semester 6

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MC003 Probability theory
2+2+0
E
5 cr.
MI038 Birotics
2+0+2
E
5 cr.
MM003 Astronomy
2+1+1
E
5 cr.
MS005 Optional course 5
2+1+0
E
5 cr.
MS006 Optional course 6
2+1+0
E
5 cr.
MS007 Optional course 7
2+1+0
C
5 cr.
TOTAL
12+6+3=21
 
30 cr.
Facultative Courses:
Y015 Practice of education - Mathematics
0+4+0
C
5 cr.
Subjects for optional course 5.
Package with subjects in romanian language:
ME004 Partial differential equations (2)
2+1+0
5 cr.
MO005 Functional analysis (2)
2+1+0
5 cr.
Package with subjects in hungarian language:
ME004 Partial differential equations (2)
2+1+0
5 cr.
MO005 Functional analysis (2)
2+1+0
5 cr.
Subjects for optional course 6.
Package with subjects in romanian language:
MC002 Numerical analysis (2)
2+1+0
5 cr.
MG005 Calculus on manifolds
2+1+0
5 cr.
Package with subjects in hungarian language:
MC002 Numerical analysis (2)
2+1+0
5 cr.
MG005 Calculus on manifolds
2+1+0
5 cr.
Subjects for optional course 7.
Package with subjects in romanian language:
MM005 Selected topics of mechanics
2+1+0
5 cr.
MT005 Special topics of function theory
2+1+0
5 cr.
Package with subjects in hungarian language:
MM005 Selected topics of mechanics
2+1+0
5 cr.
MT005 Special topics of function theory
2+1+0
5 cr.

Semester 7

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MC004 Mathematical statistics
2+2+1
E
6 cr.
MO006 Operations research
2+2+0
E
6 cr.
MS008 Optional course 8
2+1+0
C
6 cr.
MS009 Optional course 9
2+1+0
C
6 cr.
MS010 Optional course 10
2+1+0
C
6 cr.
TOTAL
10+7+1=18
 
30 cr.
Facultative Courses:
MA006 History of mathematics
2+0+0
C
3 cr.
Subjects for optional courses 8, 9, 10.
Package 1:
MA008 Theory of categories
2+1+0
6 cr.
MA011 Representation theory of groups
2+1+0
6 cr.
MG011 Homotopy theory
2+1+0
6 cr.
MG016 Symplectic geometry
2+1+0
6 cr.
Package 2:
MO033 Non-smooth analysis
2+1+0
6 cr.
MO046 Decision theory
2+1+0
6 cr.
MT007 Geometric function theory (1)
2+1+0
6 cr.
MT015 Hardy spaces
2+1+0
6 cr.
Package 3:
MC009 Multivariate approximations
2+1+0
6 cr.
MC019 Approximation operators
2+1+0
6 cr.
ME034 Fixed point theory and differential equations
2+1+0
6 cr.
ME035 Spectral theory for partial differential equations
2+1+0
6 cr.
MM009 Fluid mechanics
2+1+0
6 cr.
MM020 Celestical mechanics and spatial dynamics
2+1+0
6 cr.
Package with subjects in hungarian language:
MA023 Complements of algebra and numbers theory
2+1+0
6 cr.
MG007 The foundation of geometry
2+1+0
6 cr.
MM004 Celestical Mechanics
2+1+0
6 cr.
MO009 Supplement of mathematica analysis
2+1+0
6 cr.
MT007 Geometric function theory (1)
2+1+0
6 cr.
MT025 General topology
2+1+0
6 cr.

Semester 8

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MS011 Optional course 11
2+1+0
E
8 cr.
MS012 Optional course 12
2+1+0
E
8 cr.
MS013 Optional course 13
2+1+0
E
8 cr.
MS014 Optional course 14
2+1+0
C
6 cr.
TOTAL
8+4+0=12
 
30 cr.
Subjects for optional courses 11, 12 and 13.
Package 1:
MA009 Commutative algebra
2+1+0
8 cr.
MA020 Selected topics of theory of categories
2+1+0
8 cr.
MG012 Lie groups and Lie algebras
2+1+0
8 cr.
MG013 Homology theory
2+1+0
8 cr.
Package 2:
MO009 Supplement of mathematica analysis
2+1+0
8 cr.
MO034 Multiobjective optimization
2+1+0
8 cr.
MT016 The geometric function theory of several complex variables
2+1+0
8 cr.
MT021 Topics in the geometry of Banach spaces
2+1+0
8 cr.
Package 3:
MC017 Numerical integration of the functions
2+1+0
8 cr.
MC018 Special topics in mathematical statistics
2+1+0
8 cr.
ME036 Spline functions and applications to differential equations
2+1+0
8 cr.
ME037 Topological methods in nonlinear analysis
2+1+0
8 cr.
MM007 Theory of stellar pulsations
2+1+0
8 cr.
MM021 Boundary integral methods in fluid mechanics
2+1+0
8 cr.
Package with subjects in hungarian language:
MA021 Selected topics of number theory
2+1+0
8 cr.
ME041 Nonlinear analysis
2+1+0
8 cr.
ME042 Selected topics of partial differential equations
2+1+0
8 cr.
MG021 Projective geometry
2+1+0
8 cr.
MM017 Special topics in mathematical analysis
2+1+0
8 cr.
MO044 Convex functions
2+1+0
8 cr.
MO045 Special topics in mathematical analysis
2+1+0
8 cr.
MT011 Geometrical topology of function spaces (1)
2+1+0
8 cr.
Subjects for optional course 14.
Package with subjects in romanian language:
MA019 Selected topics of groups theory
2+1+0
6 cr.
MC013 Information theory
2+1+0
6 cr.
ME038 Multivalued analysis and applications
2+1+0
6 cr.
MG007 The foundation of geometry
2+1+0
6 cr.
MM022 Stellar gravitation and cosmology
2+1+0
6 cr.
MO014 Selected topics in operations research
2+1+0
6 cr.
MP012 Financial mathematics and actuarial
2+1+0
6 cr.
MT026 Differentiability for convex functions
2+1+0
6 cr.
Package with subjects in hungarian language:
ME039 Discrete and reccurence equations
2+2+0
6 cr.
MO016 Optimization theory
2+2+0
6 cr.