ADMISSION 2024

Written exam in MATHEMATICS

IMPORTANT NOTE: Problems can have one or more correct answers, which the candidate should indicate on the test form. The grading system of the multiple choice exam can be found in the set of rules of the competition.

1. If $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=4^{x}-2^{x+1}
$$

then the value of the expression $f\left(\log _{2} 3\right)$ is
A -1 ;
B 2;
C 3 ;
D 5.
2. The value of the limit $\lim _{x \rightarrow \infty} \sqrt{x}(\sqrt{x+3}-\sqrt{x+1})$ is:
A 0;
(B) $\frac{1}{2}$;
C 2;
D 1.
3. In the parallelogram $A B C D$ we know that $A B=1, A D=2$ and $\widehat{B}=60^{\circ}$. Which of the following statements are true?

$$
\begin{array}{|lll}
\mathrm{A} & C D=2 ; & \mathrm{B} B C=2 ; \\
\mathrm{C} & A C=\sqrt{3} ; & \mathrm{D} B D=\sqrt{3} .
\end{array}
$$

4. Let A be a set with n elements. If the number of subsets of A having $(n-2)$ elements is 10 , then

$$
\begin{array}{ll}
\mathrm{A} & n \in(2,6] ; \\
\mathrm{B} & n \in(6,10] ;
\end{array} \quad \mathrm{C} n \in(10,14] ;
$$

5. Let S be the set of real solutions of the equation

$$
4^{x}-2^{x} \cdot 5^{x+1}=6 \cdot 25^{x}
$$

Which of the following statements are true?
A S has exactly two elements;
C $\frac{1+\log _{2} 3}{1+\log _{2} 5} \in S$;
B S has exactly one element;
D $\frac{1+\log _{2} 3}{1-\log _{2} 5} \in S$.
6. In the triangle $A B C$ we have $E \in(A B), E B=2 \cdot E A, F \in(A C)$ and $F A=3 \cdot F C$. Given that the points A, E and F have coordinates $A(1,3), E(3,6)$ and $F(4,18)$, the coordinates of the centroid (center of mass) G of the triangle $A B C$ are:
A $G\left(\frac{13}{3}, \frac{38}{3}\right)$;
(B) $G\left(\frac{23}{9}, 10\right)$;
(C) $G\left(\frac{47}{9}, \frac{70}{3}\right)$;
D $G(7,26)$.
7. In the triangle $A B C$ the points $D(1,5), E(-4,4)$ and $F(6,2)$ are the midpoints of the sides $A B, B C$ and $A C$, respectively. The area of the triangle $A B C$ is:
A 10;
B 20;
C 40;
D 80 .
8. The value of the integral $\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x} \mathrm{~d} x$ is:
A $\frac{\pi}{4}$;
B $\frac{\pi}{2}$;
C 1 ;
D π.
9. For the real number a, the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is given by $f(x)=1+x+a x \mathrm{e}^{-x^{2}}$. Consider the points $A(0,1)$ and $B(-1,3)$. The value of a for which the line $A B$ is tangent to the graph of f in the point A is:
A -5 ;
B -3 ;
C 0 ;
D 3 .
10. In the parallelogram $A B C D$ we have $A(-2,1), B(2,3)$ and $C(5,3)$. The equation of the line $B D$ is:
A $2 x-y-1=0$;
B $x-2 y+4=0$;
C $2 x+y-1=0$;
D $x+2 y+4=0$.
11. Let $\alpha \in(\pi, 2 \pi)$ with $\cos (\alpha)=-\frac{1}{4}$. Which of the following statements are true?

$$
\text { A } \sin (\alpha)=-\frac{\sqrt{15}}{4} ; \quad \mathrm{B} \sin (2 \alpha)=-\frac{\sqrt{15}}{8} ; \quad \mathrm{C} \cos (2 \alpha)=-\frac{7}{8} ; \quad \mathrm{D} \operatorname{tg}(\alpha)=-\sqrt{15} \text {. }
$$

12. Let \vec{i} and \vec{j} be the versors of a cartesian system. If the vectors $\vec{u}=2 \vec{i}+(p-1) \vec{j}$ and $\vec{v}=8 \vec{i}-3 \vec{j}$ are parallel, then the parameter $p \in \mathbb{R}$ can be:
A $\frac{1}{4}$;
B $\frac{7}{4}$;
C $\frac{19}{3}$;
D 6.
13. The integer numbers $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ are in a geometric progression with ratio $q=3$ and $S=$ $b_{1}+b_{2}+b_{3}+b_{4}+b_{5}$. Which of the following statements are correct?

A S is divisible by 11 .
B S is a perfect square if and only if b_{1} is a perfect square.
C If b_{1} is odd, then S is even.
D If b_{1} is odd, then S is odd.
14. Let a be a real parameter and consider the system of equations:

$$
\left\{\begin{array}{l}
x+y-z=a \\
x+2 y-z=0 \\
x+a y+z=1
\end{array}\right.
$$

Which of the following statements are correct?
A For every $a \in \mathbb{R}$ the determinant of the matrix of the system is non-zero.
B There exists $a \in \mathbb{R}$ for which the system has at least two solutions.
C If $a=1$, then $x+y+z=1$.
D There exists $a \in \mathbb{R}$ such that $x+y+z=0$.
15. In the permutation group S_{4} consider the elements

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 3
\end{array}\right) .
$$

If $x \in S_{4}$ is a permutation such that $\sigma x=\tau$, then
A x is not uniquely determined;
C $x^{2}=\sigma$;
B x is uniquely determined;
D x^{2} is the identity permutation.
16. Let $a, b \in \mathbb{R}$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ the function defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin (a x)}{x}, & \text { if } x<0 \\
\mathrm{e}^{b x}+2 \sin x, & \text { if } x \geq 0
\end{array}\right.
$$

If f is differentiable on \mathbb{R}, then the value of the sum $a+b$ is:
A 1;
B 0;
C -2 ;
D -1 .
17. Given a real number a, consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$, defined by $f(x)=\frac{x^{2}+a x}{\sqrt{x^{2}+1}}$. The set of values a for which f has a local extremum point situated at distance 1 from the $O y$ axis is:
A $\{-3,3\}$;
B $\{-3\}$;
C $\{3\}$;
D the empty set.
18. Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be the function defined by $f(x)=\int_{-\pi}^{x} t \sin t \mathrm{~d} t$. Which of the following statements are true?

> | A $x=0$ is a local extremum point for $f ;$ | C f is strictly decreasing on $[-\pi, \pi] ;$ |
| :--- | :--- |
| $\mathrm{B} f$ is strictly increasing on $[-\pi, \pi] ;$ | $\mathrm{D} x=0$ is an inflection point for f. |

19. Let $A B C D E F$ be a regular hexagon with side length 1 . Which of the following statements are true?
A $\overrightarrow{A B} \cdot \overrightarrow{B C}=-\frac{1}{2}$;
(B) $\overrightarrow{A B} \cdot \overrightarrow{C D}=-\frac{1}{2}$;
C $\overrightarrow{A B} \cdot \overrightarrow{D E}=-\frac{1}{2}$;
D $\overrightarrow{A B} \cdot \overrightarrow{E F}=-\frac{1}{2}$.
20. In the square $A B C D$ we have $A(1,0)$ și $B(5,2)$. The equation of the line $C D$ can be:
A $x-2 y-11=0$;
B $x-2 y-1=0$;
C $x-2 y+9=0$;
D $x+2 y-1=0$.
21. For every matrix $X \in \mathcal{M}_{3}(\mathbb{R})$ we write $\operatorname{Tr}(X)$ for the sum of the elements on the main diagonal of the matrix X. If

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right)
$$

then the value of the expression $\operatorname{det}\left(A^{2}\right)-\operatorname{Tr}\left(A^{2}\right)$ is
A 21;
B 22;
C 23 ;
D 24 .
22. If x_{1}, x_{2} and x_{3} are the roots of the polynomial

$$
f=X^{3}+X^{2}+6 X+2
$$

then the value of the expression $\frac{x_{2}+x_{3}}{x_{1}}+\frac{x_{1}+x_{3}}{x_{2}}+\frac{x_{1}+x_{2}}{x_{3}}$ is equal to
A 1;
B 0;
C i;
D $-i$.
23. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=\frac{\cos x}{1+\mathrm{e}^{x}}$. The area of the set in the plane enclosed by the graph of f, the $O x$ axis and the lines of the equations $x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$ is:
A 0 ;
(B) $\frac{1}{2}$;
C 1;
D 2.
24. The value of the limit $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(n+1)(n+2) \cdots(n+n)}{n^{n}}}$ is:
A e;
B $\frac{4}{\mathrm{e}}$;
C $\frac{1}{\mathrm{e}}$;
D $\frac{2}{\mathrm{e}}$.

Correct Answers

ADMISSIONS EXAM 2024

Written test in MATHEMATICS

1. C
2. D
3. B, C
4. A
5. B, D
6. A
7. C
8. A
9. B
10. A
11. A, C
12. A
13. A , B , D
14. A, C
15. B, D
16. D
17. A
18. B , D
19. B D
20. A, C
21. B
22. B
23. C
24. B
