BABESS-BOLYAI UNIVERSITY
 FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Admission exam - July 19 $^{\text {th }} 2024$
Written Exam for Computer Science

IMPORTANT NOTE:

Unless otherwise specified:

- All arithmetic operations are performed on unlimited data types (there is no overflow / underflow).
- Arrays, matrices and strings are indexed starting from 1.
- All restrictions apply to the values of the actual parameters at the time of the initial call.
- A subarray consists of elements occupying consecutive positions in the array.
- A subsequence of an array consists of elements not necessarily occupying consecutive positions in the array, but in the order in which they appear in the given array.
- If on the same row there are several consecutive assignment statements, they are separated by "; ".

1. Consider the algorithm ceFace(A, m,n), where \boldsymbol{m} is a natural number ($1 \leq \boldsymbol{m} \leq 100$), and \boldsymbol{A} is an array of \boldsymbol{m} integer elements $\left(\boldsymbol{A}[1], \boldsymbol{A}[2], \ldots, \boldsymbol{A}[\boldsymbol{m}],-10^{5} \leq \boldsymbol{A}[\boldsymbol{i}] \leq 10^{5}\right.$, for $\left.\boldsymbol{i}=1,2, \ldots, \boldsymbol{m}\right)$, and \boldsymbol{n} is a natural number $(\boldsymbol{n} \leq \boldsymbol{m})$:
```
Algorithm ceFace(A, m, n):
        For i \leftarrow 1, n execute
        min_idx \leftarrow i
        For j \leftarrow i + 1, m execute
                If A[min_idx] > A[j] then
                min_idx \leftarrow j
                EndIf
            EndFor
        aux }\leftarrow\textrm{A}[\textrm{i}
        A[i]}\leftarrowA[min_idx
        A[min_idx]}\leftarrowau
        EndFor
EndAlgorithm
```

State which of the following statements are true:
A. If $\boldsymbol{n}=\boldsymbol{m}$, then after executing the algorithm ceFace (A, m, n) the elements of the array will be ordered ascendingly.
B. If $\boldsymbol{n}=\boldsymbol{m}$, then after executing the algorithm ceFace (A, m, n) the elements of the array will be ordered descendingly.
C. If $\boldsymbol{A}=[4,64,1,25,12,22,2,11], \boldsymbol{n}=2$ and $\boldsymbol{m}=8$, after executing the ceFace (A, m, n) algorithm at least the first 3 elements of array \boldsymbol{A} will be ordered ascendingly.
D. If $\boldsymbol{n}<\boldsymbol{m}$, after executing the ceFace (A, m, n) algorithm at least the first $\boldsymbol{n}+1$ elements of array \boldsymbol{A} will be ordered ascendingly.
2. Consider the algorithm $h\left(n\right.$, a), where \boldsymbol{n} is a natural number $\left(1 \leq \boldsymbol{n} \leq 10^{3}\right)$ and \boldsymbol{a} is an array of \boldsymbol{n} integer elements ($\boldsymbol{a}[1]$, $a[2], \ldots, a[n])$, where $-100 \leq a[i] \leq 100$, for $\boldsymbol{i}=1,2, \ldots, n)$:

```
Algorithm h(n, a):
        If n = 1 then
            Return a[n]
        Else
            If a[n]>a[n-1] then
                a[n-1]}\leftarrowa[n]-a[n-1
            Else
                a[n-1]}\leftarrowa[n]+a[n-1
            EndIf
            Return h(n - 1, a)
        EndIf
EndAlgorithm
```

For what values of the number \boldsymbol{n} and array \boldsymbol{a}, will the call $\mathrm{h}(\mathrm{n}, \mathrm{a})$ return the value 1 ?
A. $\boldsymbol{n}=6, \boldsymbol{a}=[1,2,3,4,5,6]$
B. $n=6, a=[6,5,4,3,2,1]$
C. $\boldsymbol{n}=5, \boldsymbol{a}=[1,5,4,2,3]$
D. $\boldsymbol{n}=2, \boldsymbol{a}=[1,2]$
3. Consider the expression $E=(x \operatorname{MOD} 3=0) \operatorname{OR}((y<x) \operatorname{OR} \operatorname{NOT}((y * 3) \operatorname{MOD} 7 \leq 3))$.

What is the value of the expression, if $\boldsymbol{x}=10$ and $\boldsymbol{y}=41$?
A. True
B. False
C. Same value as expression E1, where E1 = NOT ((y MOD $3=0)$ OR ($(x<y)$ OR NOT $((x * 3)$ MOD $7 \leq 3))$)
D. Same value as expression E2, where $E 2=(x \operatorname{MOD} 3=0)$ OR $((x<y)$ AND $((y * x) \operatorname{MOD} 3 \leq 7))$
4. Ion implements the following algorithm to check if the natural number $\boldsymbol{n r}\left(0<\boldsymbol{n r}<10^{6}\right)$ is prime.

```
Algorithm prim(nr):
    If nr < 2 then
            Return False
    EndIf
    If (nr > 2) AND (nr MOD 2 = 0) then
            Return False
    EndIf
    d}\leftarrow
    While d * d < nr execute
        If nr MOD d = 0 then
                Return False
        EndIf
        d}\leftarrowd+
    EndWhile
    Return True
EndAlgorithm
```

Ion tests the correctness of the algorithm on the numbers in the set $\boldsymbol{M}=\{2,3,4,5,10,11,13\}$. Which of the following statements are true?
A. The algorithm is correct and returns the correct result for both the numbers in \boldsymbol{M} and any other number within the specifications.
B. The algorithm is incorrect, but returns the correct result for the numbers in \boldsymbol{M}.
C. The algorithm is incorrect, and returns incorrect results for all numbers in \boldsymbol{M}.
D. The algorithm is incorrect, but returns the correct result for at least one number in \boldsymbol{M} and an incorrect result for at least one other number in \boldsymbol{M}.
5. Consider the algorithm $f(n, x)$, where \boldsymbol{n} is a natural number $\left(1 \leq \boldsymbol{n} \leq 10^{4}\right)$, and \boldsymbol{x} is an array of \boldsymbol{n} integer elements (\boldsymbol{x} [1], $x[2], \ldots, x[n],-200 \leq x[i] \leq 200$, for $\boldsymbol{i}=1,2, \ldots, n)$:

Algorithm $f(n, x)$: For which of the following input data does the $f(n, x)$ algorithm
$a \leftarrow$ True
$i \leftarrow 1$
While a AND (i < n) execute $a \leftarrow(x[i]>x[i+1])$ $i \leftarrow i+1$
EndWhile
Return a
EndAlgorithm
return True?
A. For any array containing its positive elements followed by its negative elements
B. For any strictly descending array
C. For any array that does not contain positive elements
D. For array $\boldsymbol{x}=[5,4,3,2,1,0,-1,-2,-3,-4,-5]$ and $\boldsymbol{n}=11$
6. Consider expression $\boldsymbol{E}=\mathrm{AB}_{(16)}+120_{(3)}-120_{(4)}$, where the notation $\boldsymbol{x}_{(\boldsymbol{b})}$ signifies the number \boldsymbol{x} written in base \boldsymbol{b}. Which value corresponds to the expression \boldsymbol{E} ?
A. $162_{(10)}$
B. $278_{(8)}$
C. $1000101_{(2)}$
D. $242_{(8)}$
7. Consider the algorithm $f(\mathrm{a}, \mathrm{b})$, where \boldsymbol{a} and \boldsymbol{b} are non-zero natural numbers $\left(0<\boldsymbol{a}, \boldsymbol{b}<10^{4}\right)$.

```
Algorithm f(a, b):
    If a = 0 then
        Return b
    EndIf
    x}\leftarrowf(a-1,b + 1)
    Return f(a - 1, x - 2)
EndAlgorithm
\(x \leftarrow f(a-1, b+1)\)
ndAlgorithm
```

What is the smallest natural number \boldsymbol{a} for which the call $f(a, 15)$ returns a strictly negative number?
A. 3
B. 4
C. 5
D. 6
8. Consider the compute (n) algorithm, where \boldsymbol{n} is a natural number $\left(1<\boldsymbol{n} \leq 10^{4}\right)$.

```
Algorithm compute(n):
    x}\leftarrow
    While n > 0 execute
        If n MOD 2 = 1 then
            x}\leftarrow\textrm{x}+
        EndIf
        n}\leftarrow\textrm{n}\mathrm{ DIV 2
    EndWhile
    Return x
EndAlgorithm
```

Which of the following statements are true?
A. If \boldsymbol{n} is odd, the compute (n) algorithm returns a value greater than 1 .
B. The compute(n) algorithm returns the sum of the digits in the representation of \boldsymbol{n} in base 2 .
C. The compute(n) algorithm returns the number of odd divisors (proper and improper) of the natural number \boldsymbol{n}.
D. The compute(n) algorithm returns the number of bits equal to 1 in the representation of \boldsymbol{n} in base 2 .
9. Consider the algorithm $f(p, q, r)$, where $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r} are Boolean values:

```
Algorithm f(p, q, r):
    While (p AND (NOT r)) OR (NOT q) execute
            Write (q AND (p OR r))
            p}\leftarrow\mathrm{ NOT p
            r}\leftarrowqOR 
    EndWhile
EndAlgorithm
```

Which of the following statements are true for the call f (True, False, True)?
A. The algorithm enters an infinite loop, displaying False repeatedly.
B. The algorithm does not display anything.
C. The algorithm displays the value False only once.
D. The algorithm displays the values False True False.
10. Consider the following binary tree:

	1
	/ \}
	2
	\}
	5

Which of the following sequences of nodes correspond to the tree traversal in preorder?
A. $1,2,4,5,3$
B. $4,2,5,1,3$
C. $1,2,3,4,5$
D. $4,5,2,3,1$
11. Consider the algorithm $\operatorname{mark}(\mathrm{n}, \mathrm{m}, \mathrm{a})$, where \boldsymbol{n} and \boldsymbol{m} are non-zero natural numbers $(1 \leq \boldsymbol{n}, \boldsymbol{m} \leq 10)$, and \boldsymbol{a} is an array of \boldsymbol{n} natural numbers ($\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[\boldsymbol{n}]$). The algorithm tuple(i, j, k), where $\boldsymbol{i}, \boldsymbol{j}$, and \boldsymbol{k} are non-zero natural numbers ($1 \leq \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}, \leq 10$) returns True or False.

```
Algorithm mark(n, m, a):
    a[1] \leftarrow 1
    For i \leftarrow 2, n execute
        a[i]}\leftarrow
    EndFor
    ready \leftarrowFalse
    While NOT ready execute
        ready }\leftarrow\mathrm{ True
        For i \leftarrow 1, n execute
            For j & 1, n execute
                For s & 1, m execute
                If a[i] = 1 AND tuple(i, s, j) AND a[j] = 0 then
                a[j] \leftarrow 1
                        ready \leftarrowFalse
                EndIf
                EndFor
                EndFor
            EndFor
    EndWhile
EndAlgorithm
```

12. Consider a matrix $\boldsymbol{m a t}$ with \boldsymbol{n} rows and \boldsymbol{n} columns $(1 \leq \boldsymbol{n} \leq 200, \boldsymbol{\operatorname { m a t }}[1][1], \ldots, \boldsymbol{\operatorname { m a t }}[1][\mathbf{n}], \boldsymbol{\operatorname { m a t }}[2][1], \ldots, \boldsymbol{\operatorname { m a t }}[2][\boldsymbol{n}], \ldots$, $\boldsymbol{m a t}[\boldsymbol{n}][1], \ldots, \boldsymbol{m a t}[\boldsymbol{n}][\boldsymbol{n}])$ and the matrice (mat, n) algorithm.
```
```

Algorithm matrice(mat, n):

```
```

Algorithm matrice(mat, n):
$k \leftarrow 1$
$k \leftarrow 1$
For $\mathrm{i} \leftarrow 1$, n execute
For $\mathrm{i} \leftarrow 1$, n execute
For $\mathrm{j} \leftarrow 1$, n execute
For $\mathrm{j} \leftarrow 1$, n execute
$\operatorname{mat}[i][j] \leftarrow k$
$\operatorname{mat}[i][j] \leftarrow k$
$k \leftarrow k *(-1)$
$k \leftarrow k *(-1)$
EndFor
EndFor
EndFor
EndFor
Return mat
Return mat
EndAlgorithm

```
```

 EndAlgorithm
    ```
```

Which of the following statements are true for the matrix returned by the matrice (mat, n) call?
A. If $\boldsymbol{n}=31$, the product of the elements on the main diagonal is 1 .
B. If $\boldsymbol{n}=32$, the product of the elements on the first row is 1 .
C. If $\boldsymbol{n}=127$, the element on the last row and the last column is -1 .
D. If $\boldsymbol{n}=128$, the sum of the elements on the first column is 1 .

EndFor
Return mat
EndAlgorithm

```
                            D. If \(\boldsymbol{n}=128\), the sum of the elements on the first column is 1 .
```

```
                            D. If \(\boldsymbol{n}=128\), the sum of the elements on the first column is 1 .
```

Assume that for all triplets below, the algorithm tuple(i, j, k) returns True. For which pairs of triplets will the effect of the call mark $(3,3, a)$ be that of setting all the elements of array \boldsymbol{a} to the value 1 ?
A. $(1,1,2)$ and $(2,2,3)$
B. $(1,1,2)$ and $(3,2,2)$
C. $(1,2,2)$ and $(1,3,3)$
D. $(1,2,2)$ and $(3,3,1)$
$\boldsymbol{m a t}[\boldsymbol{n}][1], \ldots, \boldsymbol{m a t}[\boldsymbol{n}][\boldsymbol{n}])$ and the matrice(mat, n) algorithm.
13. Consider the algorithm modifica(n , a), where \boldsymbol{n} is a natural number $\left(1 \leq \boldsymbol{n} \leq 10^{3}\right)$, and \boldsymbol{a} is an array of \boldsymbol{n} integer elements ($\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[\boldsymbol{n}],-100 \leq \boldsymbol{a}[i] \leq 100, \boldsymbol{i}=1, \ldots, \boldsymbol{n})$:

```
Algorithm modifica(n, a):
    x}\leftarrowa[n
    i}\leftarrow
    For j & 1, n - 1 execute
        If a[j] s x then
            i}\leftarrowi+
            t}\leftarrowa[i
            a[i]}\leftarrowa[j
            a[j]}\leftarrow
        EndIf
    EndFor
    t}\leftarrowa[i+1
    a[i+1]}\leftarrowa[n
    a[n]}\leftarrow
    Return a
EndAlgorithm
\(t \leftarrow a[i+1]\)
\(a[i+1] \leftarrow a[n]\)
\(a[n] \leftarrow t\)
Return a
EndAlgorithm
```

Which of the following statements are true?
A. If array \boldsymbol{a} is sorted ascendingly, it will remain sorted ascendingly when the algorithm finishes.
B. If array \boldsymbol{a} is sorted strictly descending, then in the array returned by the algorithm the maximum element will be on the last position.
C. The array returned by the algorithm will always have the maximum element in the last position.
D. If $\boldsymbol{n}=100$, and the elements of array \boldsymbol{a} have the property that $\boldsymbol{a}[\boldsymbol{i}]=\boldsymbol{i}$ MOD 2 , for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n}$, then at the end of the algorithm's execution the array will be sorted ascendingly.
14. Consider the algorithm $f(v, n)$, where \boldsymbol{n} is a natural number $\left(2 \leq \boldsymbol{n} \leq 10^{4}\right)$ and \boldsymbol{v} is an array of \boldsymbol{n} natural numbers ($\boldsymbol{v}[1]$, $v[2], \ldots, v[n], 1 \leq v[i] \leq 10^{3}$, for $\left.\boldsymbol{i}=1,2, \ldots, n\right)$.

```
Algorithm f(v,n): Which of the following statements are true?
    a \leftarrow 0; b \leftarrow n; i \leftarrow 1
    While i < n execute
        If v[i] MOD 3 = 0 then
            a}\leftarrowa+v[i
                b}\leftarrow\textrm{b}+
        EndIf
        i}\leftarrow i + 1
        b}\leftarrow\textrm{b}-
    EndWhile
    If b = 0 then
        Return 0
    EndIf
    i}\leftarrow
    While a \geq b execute
        a}\leftarrowa-
        i}\leftarrow i + 1
    EndWhile
    Return i
EndAlgorithm
A. The algorithm returns the arithmetic mean of the elements that are multiples of 3 in array \(v\), or 0 if the array contains no multiples of 3 .
B. The algorithm returns the greatest common divisor of the elements that are multiples of 3 in array \(v\), or 0 if the array contains no multiples of 3 .
C. The algorithm returns the number of elements that are multiples of 3 in array \(\boldsymbol{v}\), or 0 if the array contains no multiples of 3 .
D. None of the answers A., B., C is true.
```

15. To determine all the subsets of the set $\boldsymbol{A}=\{4,8,9,12,15\}$ with 5 elements, a student wrote the algorithm generare($\mathrm{i}, \mathrm{n}, \mathrm{x}, \mathrm{A}$). The set is represented using array \boldsymbol{A} of \boldsymbol{n} natural number elements. The generated subsets are displayed using the algorithm afis (m, x, A), \boldsymbol{x} being an auxiliary array indexed from 0 and \boldsymbol{m} a natural number representing the length of the current array \boldsymbol{x}. Before the generare(1,5,x,A) call, the element $\boldsymbol{x}[0]$ was initialized with 0 .
```
Algorithm generare(i, n, x, A):
    For j \leftarrow n, x[i - 1] + 1, -1 execute
        x[i] \leftarrow j
        afis(i, x, A)
        generare(i + 1, n, x, A)
    EndFor
EndAlgorithm
```

```
Algorithm afis(m, x, A):
    Write "{", a[x[1]]
    For i \leftarrow 2, m execute
        Write ", ", a[x[i]]
    EndFor
    Write "}", newline
EndAlgorithm
```

Knowing that the first 4 subsets displayed are, in this order: $\{15\},\{12\},\{12,15\},\{9\}$ which will be the $8^{\text {th }}$ generated subset (the empty subset is not considered)?
A. $\{9,12\}$
B. $\{8\}$
C. $\{9,12,15\}$
D. $\{8,15\}$
16. Consider the algorithm $f(x, n, k)$ where \boldsymbol{n} and \boldsymbol{k} are natural numbers ($3 \leq \boldsymbol{n} \leq 10^{4}, 1 \leq \boldsymbol{k} \leq 10^{4}$), and \boldsymbol{x} is an array of \boldsymbol{n} natural numbers $\left(x[1], x[2], \ldots, x[n], 1 \leq \boldsymbol{x}[i] \leq 10^{4}\right.$, for $\left.\boldsymbol{i}=1,2, \ldots, \boldsymbol{n}\right)$:

```
Algorithm f(x, n, k):
    If k > n then
        Return 0
    EndIf
    For i & 1, n - 1 execute
        x[i + 1] & x[i + 1] + x[i]
    EndFor
    Return x[k]
EndAlgorithm
```

For which of the following calls will the algorithm return the value 10 ?
A. $f([1,4,6], 3,3)$
B. $f([1,2,3,4,5], 5,3)$
C. $f([1,2,3,4], 4,4)$
D. $f([10,15,25], 3,1)$
17. Consider the algorithm decide(n), where \boldsymbol{n} is a natural number $\left(10^{4} \leq \boldsymbol{n} \leq 10^{7}\right)$:

```
Algorithm decide(n):
    m}\leftarrow1
    abc \leftarrow n DIV m
    While abc \geq 1000 execute
        m}\leftarrow\textrm{m}*1
        abc}\leftarrow\textrm{n}\mathrm{ DIV m
    EndWhile
    bc \leftarrowabc MOD 100
    f}\leftarrow(bc<2
    i}\leftarrow
    While i \leq bc DIV 2 execute
        If bc MOD i = 0 then
                f}\leftarrow\mathrm{ True
                i}\leftarrowb
        EndIf
        i}\leftarrow i + 1
    EndWhile
    Return f
EndAlgorithm
```

18. Consider the algorithm ceFace(n), where \boldsymbol{n} is a non-zero natural number ($1 \leq \boldsymbol{n}<10^{3}$).
```
Algorithm ceFace(n):
    Return ceFaceRecursiv(n, 1, 1)
EndAlgorithm
Algorithm ceFaceRecursiv(n, a, b):
    If n = 0 then
            Return 1
    Else
        If n< 0 OR b > n then
            Return 0
        Else
            Return ceFaceRecursiv(n, a + b, a) + ceFaceRecursiv(n - a, a + b, a)
        EndIf
    EndIf
EndAlgorithm
```

Which of the following statements are true?
A. In the range $[11,16]$ there is only one \boldsymbol{x} value for which the ceFace (x) algorithm returns 1 .
B. For any number \boldsymbol{n}, the ceFace(n) algorithm will return the value 0 or 1 .
C. The ceFace (n) algorithm returns the number of ways to write the number \boldsymbol{n} as a sum of consecutive numbers.
D. The ceFace (n) algorithm returns the number of different sets whose elements are Fibonacci numbers other than 0 and which have the sum equal to \boldsymbol{n}.
19. Consider the algorithm ceFace (x, n), where \boldsymbol{n} is a natural number $\left(1 \leq \boldsymbol{n} \leq 10^{4}\right), \boldsymbol{x}$ is an array of \boldsymbol{n} elements that are digits $(\boldsymbol{x}[1], \boldsymbol{x}[2], \ldots, \boldsymbol{x}[\boldsymbol{n}], 1 \leq \boldsymbol{x}[\boldsymbol{i}] \leq 9$, for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n}$), and the Zero(k) algorithm, which returns an array of \boldsymbol{k} elements, all equal to zero:

```
Algorithm ceFace(x, n):
    f & Zero(9)
    For i & 1, n execute
        f[x[i]] & f[x[i]] + 1
    EndFor
    i
    nr}\leftarrow
    While i > 0 execute
        If f[i] = 0 then
            nr}\leftarrow\textrm{nr}*10+\textrm{i
        EndIf
        i}\leftarrow\textrm{i}-
    EndWhile
    Return 10 * nr
EndAlgorithm
```

What does the given algorithm return?
A. A number formed from the digits of array \boldsymbol{x}
B. A number formed from the digits of array \boldsymbol{x}, with each digit used only once
C. The largest possible number formed using distinct digits that do not appear in array \boldsymbol{x}
D. The smallest possible number formed using distinct digits that do not appear in array \boldsymbol{x}
. Consider the non-zero natural numbers \boldsymbol{n} and $\boldsymbol{m},(1 \leq \boldsymbol{n}, \boldsymbol{m} \leq 100)$ and the matrix matrix with \boldsymbol{n} rows and \boldsymbol{m} columns, its elements being 0 or 1 . Consider the algorithms prelucrare(matrix, row, col, n, m) and num(matrix, n, m), where row and $\boldsymbol{c o l}$ are natural numbers $(1 \leq \boldsymbol{r o w} \leq \boldsymbol{n}, 1 \leq \boldsymbol{c o l} \leq \boldsymbol{m})$.

```
Algorithm prelucrare(matrix, row, col, n, m):
    If row \geq 1 AND row \leq n AND col \geq 1 AND col \leq m AND matrix[row][col] = 1 then
        matrix[row][col] \leftarrow0
        prelucrare(matrix, row - 1, col, n, m)
            prelucrare(matrix, row + 1, col, n, m)
            prelucrare(matrix, row, col - 1, n, m)
            prelucrare(matrix, row, col + 1, n, m)
    EndIf
EndAlgorithm
Algorithm num(matrix, n, m):
    c}\leftarrow
    For row \leftarrow 1, n execute
        For col }\leftarrow1,m execut
            If matrix[row][col] = 1 then
            c \leftarrowc + 1
            prelucrare(matrix, row, col, n, m)
        EndIf
        EndFor
    EndFor
    Return c
EndAlgorithm
```

Considering that an island is made up of identical elements neighboring horizontally or vertically, which of the following statements are true?
A. If $\boldsymbol{n} \neq \boldsymbol{m}$ the algorithm num(matrix, n, m) does not check all the elements of the matrix.
B. For the matrix with 5 rows and 5 columns:
matrix =
$\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}$
$\begin{array}{lllll}0 & 0 & 1 & 0 & 0\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}$
$\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}$
the call num(matrix, 5, 5) returns 3 .
C. The num (matrix, n, m) algorithm returns the number of islands consisting of zeros in the given matrix.
D. The num(matrix, n, m) algorithm returns the number of islands consisting of ones in the given matrix.
21. Consider two strings of characters \boldsymbol{r} and \boldsymbol{s} of length Lung ($1 \leq \boldsymbol{\operatorname { L u n g }} \leq 256$). Consider the following algorithms:

- The copiere (a, primul, ultimul) algorithm returns the string consisting of the elements of string \boldsymbol{a}, starting from the primul position to the ultimul position inclusive.
- The egale (a, b, k) algorithm returns True, if strings \boldsymbol{a} and \boldsymbol{b}, both of length \boldsymbol{k}, are identical, and False otherwise.
- The lungime (a) algorithm returns the length of string \boldsymbol{a}.
- The concatenare (a, b) algorithm returns the string obtained by concatenating string \boldsymbol{a} with string \boldsymbol{b}, in this order.

State which of the following algorithms returns the value True if string \boldsymbol{r} can be obtained by rotating string $\boldsymbol{s} 0,1$, or more times. For example, the string "abcde" can be obtained by rotating the string "cdeab".

```
A.
```

```
Algorithm check(s, r, Lung):
```

Algorithm check(s, r, Lung):
For i \leftarrow 1, Lung execute
For i \leftarrow 1, Lung execute
If egale(s, r, Lung) then
If egale(s, r, Lung) then
Return True
Return True
EndIf
EndIf
aux \leftarrow s[1]
aux \leftarrow s[1]
For j < 2, Lung execute
For j < 2, Lung execute
s[j - 1] \& s[j]
s[j - 1] \& s[j]
EndFor
EndFor
s[Lung] \leftarrow aux
s[Lung] \leftarrow aux
EndFor
EndFor
Return False
Return False
EndAlgorithm

```
EndAlgorithm
```

B.

```
Algorithm check(s, r, Lung):
    ss \leftarrow concatenare(s, s)
    i}\leftarrow
    sf}\leftarrow\mathrm{ Lung + 1
    While i \leq sf execute
        k}\leftarrow\textrm{i
        j}\leftarrow
        While j \leq Lung AND ss[k] = r[j] execute
                        j}\leftarrowj+
                k}\leftarrowk+
        EndWhile
        If j > Lung then
                Return True
            EndIf
    i}\leftarrow i + 1
    EndWhile
    Return False
EndAlgorithm
```

C.

```
Algorithm check(s, \(r\), Lung):
        ss \(\leftarrow\) concatenare \((r, s)\)
        \(i \leftarrow 1\)
        While i s Lung execute
            \(k \leftarrow i\)
            \(j \leftarrow 1\)
        While \(j\) s Lung AND ss[k] = r[j] execute
            \(j \leftarrow j+1\)
            \(k \leftarrow k+1\)
        EndWhile
        If j > Lung then
            Return True
        EndIf
        \(\mathrm{i} \leftarrow \mathrm{i}+1\)
    EndWhile
    Return False
EndAlgorithm
```

D.

```
Algorithm check(s, r, Lung):
    pos1 \leftarrow 1
    ok \leftarrowFalse
    While r[pos1] f s[1] execute
        pos1 \leftarrow pos1 + 1
    EndWhile
    If pos1 > 0 then
        ok \leftarrow egale(s, r, Lung)
    EndIf
    If NOT ok then
        pos2 \leftarrow Lung - pos1 + 1
        ok \leftarrow (r[1] = s[pos2])
        ss \leftarrowcopiere(s, pos2, Lung)
        rr}\leftarrowcopiere(r, 1, pos1
        ok \leftarrow ok AND egale(rr, ss, lungime(ss))
    EndIf
    Return ok
EndAlgorithm
```

22. Consider the algorithm ceFace (a, n) where \boldsymbol{n} is a natural number ($2<\boldsymbol{n} \leq 10^{4}$) and \boldsymbol{a} is an array of \boldsymbol{n} natural numbers (a[1], $\boldsymbol{a}[2], \ldots, \boldsymbol{a}[\boldsymbol{n}], 0 \leq \boldsymbol{a}[i] \leq 10^{4}$ for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n}$).
We consider the algorithm nrPalindromuri(b, p, r), where \boldsymbol{b} is an array of \boldsymbol{m} natural numbers ($\boldsymbol{b}[1], \boldsymbol{b}[2], \ldots, \boldsymbol{b}[\boldsymbol{m}]$, $0 \leq \boldsymbol{b}[\boldsymbol{j}] \leq 10^{4}$ for $\left.\boldsymbol{j}=1,2, \ldots, \boldsymbol{m}, 2<\boldsymbol{m}<10^{4}\right)$. The parameters \boldsymbol{p} and \boldsymbol{r} are natural numbers such that $1 \leq \boldsymbol{p}<\boldsymbol{r} \leq \boldsymbol{m}$. The nrPalindromuri (b, p, r) algorithm returns the number of palindrome numbers in the $\boldsymbol{b}[\boldsymbol{p}], \ldots, \boldsymbol{b}[\boldsymbol{r}]$ subarray of array \boldsymbol{b}.
```
Algorithm ceFace(a, n):
    b}\leftarrow0;c\leftarrowb;e\leftarrow0;d\leftarrow
    For i}\leftarrow1, n - 2 execut
        If nrPalindromuri(a, i, i + 2) > 1 then
                If c = 0 then
                    d}\leftarrow 
                EndIf
                c}\leftarrowc+
        Else
                If c > b then
                    b}\leftarrowc;e\leftarrow
                EndIf
                c}\leftarrow
        EndIf
    EndFor
    If c > b then
        b}\leftarrow\textrm{c};\textrm{e}\leftarrow
    EndIf
    If b = 0 then
        Write 0, " ", 0
    Else
        Write e, " ", e + b + 1
    EndIf
EndAlgorithm
If \(b=0\) then Write 0, " ", 0
Else Write e, " ", e + b + 1
EndIf
EndAlgorithm
```

Which of the following statements are true?
A. If in the case of an array of length 10^{4} the value 73817384 is displayed, it follows that among the 4 numbers located in the array in the range of positions [7381, ..., 7384] there are exactly two palindrome numbers.
B. If $\boldsymbol{n}=12$ and $\boldsymbol{a}=[11,33,45,103,121,343,33,99$, $100,22,44,45]$ the ceFace (a, n) algorithm displays: 58
C. If at the end of the execution of the algorithm the value of \boldsymbol{b} is 0 , it follows that in array \boldsymbol{a} there is no palindrome number.
D. If $\boldsymbol{n}=12$ and $\boldsymbol{a}=[11,33,45,103,121,343,33,99$, $100,22,44,45]$ the ceFace (a, n) algorithm displays: 412
23. Consider algorithm fun $(a, b, l e n)$, where $\boldsymbol{l} \boldsymbol{e} \boldsymbol{n}$ is a natural number $(1 \leq \boldsymbol{l e n} \leq 100)$, and \boldsymbol{a} and \boldsymbol{b} are two arrays having the same length len $(\boldsymbol{a}[1], \boldsymbol{a}[2], \ldots, \boldsymbol{a}[$ len $], \boldsymbol{b}[1], \boldsymbol{b}[2], \ldots, \boldsymbol{b}[$ len $], 1 \leq \boldsymbol{a}[\boldsymbol{i}], \boldsymbol{b}[\boldsymbol{i}] \leq \boldsymbol{l e n}, \mathrm{i}=1,2, \ldots$, len $)$.

```
Algorithm fun(a, b, len):
    For i \leftarrow 1, len execute
        k}\leftarrowa[b[i]
        a[b[i]]}\leftarrow\textrm{b}[\textrm{a}[\textrm{i}]
        b[a[i]]}\leftarrow
    EndFor
EndAlgorithm
```

Let len $=7, \boldsymbol{a}=[6,2,5,4,1,3,4]$ and $\boldsymbol{b}=[1,2,3,5,6,4,4]$. In the two arrays, before the execution of the algorithm fun(a, b, len) there are two elements having the same value, located on identical positions $(\boldsymbol{a}[2]=\boldsymbol{b}[2]$ and $\boldsymbol{a}[7]=\boldsymbol{b}[7])$).

Which of the following statements are true following the call fun($a, b, l e n$)?
A. Arrays \boldsymbol{a} and \boldsymbol{b} will have identical elements at positions 3 and 6 .
B. Arrays \boldsymbol{a} and \boldsymbol{b} will each have three elements having the same value, located on identical positions.
C. Array \boldsymbol{b} will have the values: $[1,2,3,4,6,5,4]$.
D. Array \boldsymbol{a} will have the values: $[4,2,6,3,6,1,4]$.
24. Consider the algorithm calculeaza ($\mathrm{v}, \mathrm{b}, \mathrm{n}$, i), where $\boldsymbol{b}, \boldsymbol{n}, \boldsymbol{i}$ are non-zero natural numbers ($1 \leq \boldsymbol{b}, \boldsymbol{n}, \boldsymbol{i} \leq 10^{3}$), and \boldsymbol{v} is an array of \boldsymbol{n} natural number elements ($\boldsymbol{v}[1], v[2], \ldots, v[n], 0 \leq v[i] \leq 10^{3}$, for $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n}$):

```
Algorithm calculeaza(v, b, n, i):
    If b = 0 then
            Return True
    EndIf
    If i = n then
        Return False
    EndIf
    Return calculeaza(v, b - v[i], n, i + 1) OR calculeaza(v, b, n, i + 1)
EndAlgorithm
```

Written Exam for Computer Science
GRADING AND SOLUTIONS

DEFAULT: 10 points

| 1. | ACD | 3.75 points |
| :--- | :---: | :---: |
| 2. | BD | 3.75 points |
| 3. | AD | 3.75 points |
| 4. | B | 3.75 points |
| 5. | BD | 3.75 points |
| 6. | AD | 3.75 points |
| 7. | C | 3.75 points |
| 8. | ABD | 3.75 points |
| 9. | A | 3.75 points |
| 10. | A | 3.75 points |
| 11. | AC | 3.75 points |
| 12. | AB | 3.75 points |
| 13. | ABD | 3.75 points |
| 14. | D | 3.75 points |
| 15. | B | 3.75 points |
| 16. | CD | 3.75 points |
| 17. | AD | 3.75 points |
| 18. | AD | 3.75 points |
| 19. | C | 3.75 points |
| 20. | BD | 3.75 points |
| 21. | AB | 3.75 points |
| 22. | AD | 3.75 points |
| 23. | BCD | 3.75 points |
| 24. | ABD | 3.75 points |

