BABEŞ-BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Admission exam – July 19th 2024 Written Exam for Computer Science

IMPORTANT NOTE:

Unless otherwise specified:

- All arithmetic operations are performed on unlimited data types (there is no *overflow / underflow*).
- Arrays, matrices and strings are indexed starting from 1.
- All restrictions apply to the values of the actual parameters at the time of the initial call.
- A subarray consists of elements occupying consecutive positions in the array.
- A subsequence of an array consists of elements not necessarily occupying consecutive positions in the array, but in the order in which they appear in the given array.
- If on the same row there are several consecutive assignment statements, they are separated by "; ".
- 1. Consider the algorithm ceFace(A, m, n), where m is a natural number $(1 \le m \le 100)$, and A is an array of m integer elements $(A[1], A[2], ..., A[m], -10^5 \le A[i] \le 10^5$, for i = 1, 2, ..., m), and n is a natural number $(n \le m)$:

```
Algorithm ceFace(A, m, n):

For i ← 1, n execute

min_idx ← i

For j ← i + 1, m execute

If A[min_idx] > A[j] then

min_idx ← j

EndIf

EndFor

aux ← A[i]

A[i] ← A[min_idx]

A[min_idx] ← aux

EndFor

EndAlgorithm
```

State which of the following statements are true:

- A. If n = m, then after executing the algorithm ceFace(A, m, n) the elements of the array will be ordered ascendingly.
- B. If n = m, then after executing the algorithm ceFace(A, m, n) the elements of the array will be ordered descendingly.
- C. If A = [4, 64, 1, 25, 12, 22, 2, 11], n = 2 and m = 8, after executing the ceFace(A, m, n) algorithm at least the first 3 elements of array A will be ordered ascendingly.
- D. If n < m, after executing the ceFace(A, m, n) algorithm at least the first n + 1 elements of array A will be ordered ascendingly.
- **2.** Consider the algorithm h(n, a), where n is a natural number $(1 \le n \le 10^3)$ and a is an array of n integer elements (a[1], a[2], ..., a[n]), where $-100 \le a[i] \le 100$, for i = 1, 2, ..., n:

```
Algorithm h(n, a):
    If n = 1 then
        Return a[n]
    Else
        If a[n] > a[n - 1] then
            a[n - 1] ← a[n] - a[n - 1]
        Else
            a[n - 1] ← a[n] + a[n - 1]
        EndIf
        Return h(n - 1, a)
        EndIf
EndAlgorithm
```

For what values of the number n and array a, will the call h(n, a) return the value 1?

```
A. n = 6, a = [1, 2, 3, 4, 5, 6]
```

B.
$$n = 6, a = [6, 5, 4, 3, 2, 1]$$

C.
$$n = 5, a = [1, 5, 4, 2, 3]$$

D.
$$n = 2, a = [1, 2]$$

3. Consider the expression E = (x MOD 3 = 0) OR $((y < x) \text{ OR NOT } ((y * 3) \text{ MOD } 7 \le 3))$.

What is the value of the expression, if x = 10 and y = 41?

- A. True
- B. False
- C. Same value as expression E1, where E1 = NOT ((y MOD 3 = 0) OR ((x < y) OR NOT ((x * 3) MOD 7 \leq 3)))
- D. Same value as expression E2, where E2 = $(x \mod 3 = 0)$ OR $((x < y) \mod ((y * x) \mod 3 \le 7))$

4. Ion implements the following algorithm to check if the natural number nr ($0 < nr < 10^6$) is prime.

```
Algorithm prim(nr):
    If nr < 2 then</pre>
        Return False
    EndIf
    If (nr > 2) AND (nr MOD 2 = 0) then
        Return False
    EndIf
    d ← 3
    While d * d < nr execute
        If nr MOD d = 0 then
             Return False
        EndIf
        d \leftarrow d + 2
    EndWhile
    Return True
EndAlgorithm
```

Ion tests the correctness of the algorithm on the numbers in the set $M = \{2, 3, 4, 5, 10, 11, 13\}$. Which of the following statements are true?

- A. The algorithm is correct and returns the correct result for both the numbers in *M* and any other number within the specifications.
- B. The algorithm is incorrect, but returns the correct result for the numbers in M.
- C. The algorithm is incorrect, and returns incorrect results for all numbers in M.
- D. The algorithm is incorrect, but returns the correct result for at least one number in M and an incorrect result for at least one other number in M.

5. Consider the algorithm f(n, x), where n is a natural number $(1 \le n \le 10^4)$, and x is an array of n integer elements $(x[1], x[2], ..., x[n], -200 \le x[i] \le 200$, for i = 1, 2, ..., n):

```
Algorithm f(n, x):

a ← True
i ← 1

While a AND (i < n) execute

a ← (x[i] > x[i + 1])

i ← i + 1

EndWhile

Return a

EndAlgorithm
```

For which of the following input data does the f(n, x) algorithm return True?

- A. For any array containing its positive elements followed by its negative elements
- B. For any strictly descending array
- C. For any array that does not contain positive elements
- D. For array x = [5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5] and n = 11

6. Consider expression $E = AB_{(16)} + 120_{(3)} - 120_{(4)}$, where the notation $x_{(b)}$ signifies the number x written in base b.

Which value corresponds to the expression E?

- A. 162₍₁₀₎
- B. 278₍₈₎

C. 1000101₍₂₎

D. 242₍₈₎

7. Consider the algorithm f(a, b), where a and b are non-zero natural numbers $(0 < a, b < 10^4)$.

```
Algorithm f(a, b):
    If a = 0 then
        Return b
    EndIf
    x ← f(a - 1, b + 1)
    Return f(a - 1, x - 2)
EndAlgorithm
```

What is the smallest natural number a for which the call f(a, 15) returns a strictly negative number?

- A. 3
- B. 4
- C. 5
- D. 6

8. Consider the compute(n) algorithm, where n is a natural number $(1 < n \le 10^4)$.

```
Algorithm compute(n):
    x ← 0
While n > 0 execute
    If n MOD 2 = 1 then
        x ← x + 1
    EndIf
    n ← n DIV 2
EndWhile
Return x
EndAlgorithm
```

Which of the following statements are true?

- A. If *n* is odd, the compute(n) algorithm returns a value greater than 1.
- B. The compute(n) algorithm returns the sum of the digits in the representation of n in base 2.
- C. The compute(n) algorithm returns the number of odd divisors (proper and improper) of the natural number n.
- D. The compute(n) algorithm returns the number of bits equal to 1 in the representation of n in base 2.

9. Consider the algorithm f(p, q, r), where p, q and r are Boolean values:

```
Algorithm f(p, q, r):

While (p AND (NOT r)) OR (NOT q) execute

Write (q AND (p OR r))

p ← NOT p

r ← q OR p

EndWhile

EndAlgorithm
```

10. Consider the following binary tree:

```
1
/\
2 3
/\
4 5
```

EndAlgorithm

Which of the following statements are true for the call f(*True*, *False*, *True*)?

- A. The algorithm enters an infinite loop, displaying *False* repeatedly.
- B. The algorithm does not display anything.
- C. The algorithm displays the value *False* only once.
- D. The algorithm displays the values False True False.

Which of the following sequences of nodes correspond to the tree traversal in preorder?

```
A. 1, 2, 4, 5, 3
B. 4, 2, 5, 1, 3
C. 1, 2, 3, 4, 5
D. 4, 5, 2, 3, 1
```

11. Consider the algorithm mark(n, m, a), where n and m are non-zero natural numbers $(1 \le n, m \le 10)$, and a is an array of n natural numbers (a[1], a[2], ..., a[n]). The algorithm tuple(i, j, k), where i, j, and k are non-zero natural numbers $(1 \le i, j, k, \le 10)$ returns True or False.

```
Algorithm mark(n, m, a):
   a[1] \leftarrow 1
   For i \leftarrow 2, n execute
       a[i] \leftarrow 0
   EndFor
   ready ← False
   While NOT ready execute
       ready ← True
       For i \leftarrow 1, n execute
          For j \leftarrow 1, n execute
              For s ← 1, m execute
                  If a[i] = 1 AND tuple(i, s, j) AND a[j] = 0 then
                     a[j] \leftarrow 1
                      ready ← False
                  EndIf
              EndFor
          EndFor
       EndFor
   EndWhile
```

Assume that for all triplets below, the algorithm tuple(i, j, k) returns *True*. For which pairs of triplets will the effect of the call mark(3, 3, a) be that of setting all the elements of array *a* to the value 1?

```
A. (1, 1, 2) and (2, 2, 3)
B. (1, 1, 2) and (3, 2, 2)
C. (1, 2, 2) and (1, 3, 3)
D. (1, 2, 2) and (3, 3, 1)
```

12. Consider a matrix mat with n rows and n columns $(1 \le n \le 200, mat[1][1], ..., mat[1][n], mat[2][1], ..., mat[n][1], ..., mat[n][n])$ and the matrice(mat, n) algorithm.

```
Algorithm matrice(mat, n):
    k ← 1
    For i ← 1, n execute
        For j ← 1, n execute
            mat[i][j] ← k
            k ← k * (-1)
        EndFor
    EndFor
    Return mat
```

EndAlgorithm

Which of the following statements are true for the matrix returned by the matrice(mat, n) call?

- A. If n = 31, the product of the elements on the main diagonal is 1.
- B. If n = 32, the product of the elements on the first row is 1.
- C. If n = 127, the element on the last row and the last column is -1.
- D. If n = 128, the sum of the elements on the first column is 1.

13. Consider the algorithm modifica(n, a), where n is a natural number $(1 \le n \le 10^3)$, and a is an array of n integer elements $(a[1], a[2], ..., a[n], -100 \le a[i] \le 100, i = 1, ..., n)$:

```
Algorithm modifica(n, a):
     x \leftarrow a[n]
     i \leftarrow 0
     For j \leftarrow 1, n - 1 execute
           If a[j] \le x then
                i \leftarrow i + 1
                t ← a[i]
                a[i] \leftarrow a[j]
                a[j] ← t
           EndIf
     EndFor
     t \leftarrow a[i + 1]
     a[i + 1] \leftarrow a[n]
     a[n] \leftarrow t
     Return a
EndAlgorithm
```

Which of the following statements are true?

- A. If array *a* is sorted ascendingly, it will remain sorted ascendingly when the algorithm finishes.
- B. If array *a* is sorted strictly descending, then in the array returned by the algorithm the maximum element will be on the last position.
- C. The array returned by the algorithm will always have the maximum element in the last position.
- D. If n = 100, and the elements of array a have the property that a[i] = i MOD 2, for i = 1, 2, ..., n, then at the end of the algorithm's execution the array will be sorted ascendingly.
- **14.** Consider the algorithm f(v, n), where n is a natural number $(2 \le n \le 10^4)$ and v is an array of n natural numbers $(v[1], v[2], ..., v[n], 1 \le v[i] \le 10^3$, for i = 1, 2, ..., n).

```
Algorithm f(v, n):
     a \leftarrow 0; b \leftarrow n; i \leftarrow 1
     While i < n execute
           If v[i] MOD 3 = 0 then
                a \leftarrow a + v[i]
                b \leftarrow b + 1
           EndIf
           i \leftarrow i + 1
           b \leftarrow b - 1
     EndWhile
     If b = 0 then
           Return 0
     EndIf
     i \leftarrow 0
     While a ≥ b execute
           a \leftarrow a - b
           i \leftarrow i + 1
     EndWhile
     Return i
EndAlgorithm
```

Which of the following statements are true?

- A. The algorithm returns the arithmetic mean of the elements that are multiples of 3 in array ν , or 0 if the array contains no multiples of 3.
- B. The algorithm returns the greatest common divisor of the elements that are multiples of 3 in array ν , or 0 if the array contains no multiples of 3.
- C. The algorithm returns the number of elements that are multiples of 3 in array ν , or 0 if the array contains no multiples of 3.
- D. None of the answers A., B., C is true.

15. To determine all the subsets of the set $A = \{4, 8, 9, 12, 15\}$ with 5 elements, a student wrote the algorithm generare(i, n, x, A). The set is represented using array A of n natural number elements. The generated subsets are displayed using the algorithm afis(m, x, A), x being an auxiliary array indexed from 0 and x a natural number representing the length of the current array x. Before the generare(1, 5, x, A) call, the element x[0] was initialized with 0.

Knowing that the first 4 subsets displayed are, in this order: {15}, {12}, {12, 15}, {9} which will be the 8th generated subset (the empty subset is not considered)?

```
A. {9, 12} B. {8} C. {9, 12, 15} D. {8, 15}
```

16. Consider the algorithm f(x, n, k) where n and k are natural numbers $(3 \le n \le 10^4, 1 \le k \le 10^4)$, and x is an array of n natural numbers $(x[1], x[2], ..., x[n], 1 \le x[i] \le 10^4$, for i = 1, 2, ..., n):

```
Algorithm f(x, n, k):

If k > n then

Return 0

EndIf

For i \leftarrow 1, n - 1 execute

x[i + 1] \leftarrow x[i + 1] + x[i]
EndFor

Return x[k]

For which of the following calls will the algorithm return the value 10?

A. f([1, 4, 6], 3, 3)

B. f([1, 2, 3, 4, 5], 5, 3)

C. f([1, 2, 3, 4, 5], 5, 3)

D. f([10, 15, 25], 3, 1)
```

17. Consider the algorithm decide(n), where n is a natural number ($10^4 \le n \le 10^7$):

```
Algorithm decide(n):
    m ← 10
    abc ← n DIV m
    While abc ≥ 1000 execute
        m ← m * 10
        abc ← n DIV m
    EndWhile
    bc ← abc MOD 100
    f \leftarrow (bc < 2)
    i ← 2
    While i \le bc DIV 2 execute
        If bc MOD i = 0 then
             f ← True
             i ← bc
        EndIf
        i \leftarrow i + 1
    EndWhile
    Return f
EndAlgorithm
```

For which of the following calls will the algorithm return *True*?

- A. decide(865756)
 B. decide(72387)
- C. decide(103983)
- D. decide(10405)

18. Consider the algorithm ceFace(n), where n is a non-zero natural number ($1 \le n < 10^3$).

```
Algorithm ceFace(n):
    Return ceFaceRecursiv(n, 1, 1)
EndAlgorithm

Algorithm ceFaceRecursiv(n, a, b):
    If n = 0 then
        Return 1
    Else
        If n < 0 OR b > n then
            Return 0
        Else
            Return ceFaceRecursiv(n, a + b, a) + ceFaceRecursiv(n - a, a + b, a)
        EndIf
EndIf
EndAlgorithm
```

Which of the following statements are true?

- A. In the range [11, 16] there is only one x value for which the ceFace(x) algorithm returns 1.
- B. For any number n, the ceFace(n) algorithm will return the value 0 or 1.
- C. The ceFace(n) algorithm returns the number of ways to write the number n as a sum of consecutive numbers.
- D. The ceFace(n) algorithm returns the number of different sets whose elements are Fibonacci numbers other than 0 and which have the sum equal to n.

19. Consider the algorithm ceFace(x, n), where n is a natural number $(1 \le n \le 10^4)$, x is an array of n elements that are digits $(x[1], x[2], ..., x[n], 1 \le x[i] \le 9$, for i = 1, 2, ..., n), and the Zero(k) algorithm, which returns an array of k elements, all equal to zero:

What does the given algorithm return?

- A. A number formed from the digits of array x
- B. A number formed from the digits of array x, with each digit used only once
- C. The largest possible number formed using distinct digits that do not appear in array x
- D. The smallest possible number formed using distinct digits that do not appear in array x

20. Consider the non-zero natural numbers n and m, $(1 \le n, m \le 100)$ and the *matrix* matrix with n rows and m columns, its elements being 0 or 1. Consider the algorithms preducrare(matrix, row, col, n, m) and num(matrix, n, m), where row and col are natural numbers $(1 \le row \le n, 1 \le col \le m)$.

```
Algorithm prelucrare(matrix, row, col, n, m):
    If row \geq 1 AND row \leq n AND col \geq 1 AND col \leq m AND matrix[row][col] = 1 then
        matrix[row][col] \leftarrow 0
        prelucrare(matrix, row - 1, col, n, m)
        prelucrare(matrix, row + 1, col, n, m)
        prelucrare(matrix, row, col - 1, n, m)
        prelucrare(matrix, row, col + 1, n, m)
    EndIf
EndAlgorithm
Algorithm num(matrix, n, m):
    c ← 0
    For row ← 1, n execute
        For col ← 1, m execute
            If matrix[row][col] = 1 then
                 c \leftarrow c + 1
                 prelucrare(matrix, row, col, n, m)
            EndIf
        EndFor
    EndFor
    Return c
EndAlgorithm
```

Considering that an island is made up of identical elements neighboring horizontally or vertically, which of the following statements are true?

- A. If $n \neq m$ the algorithm num(matrix, n, m) does not check all the elements of the matrix.
- B. For the matrix with 5 rows and 5 columns:

```
matrix =
1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 1 1
0 0 0 1 1
the call num(matrix, 5, 5) returns 3.
```

- C. The num(matrix, n, m) algorithm returns the number of islands consisting of zeros in the given matrix.
- D. The num(matrix, n, m) algorithm returns the number of islands consisting of ones in the given matrix.

- **21.** Consider two strings of characters r and s of length Lung ($1 \le Lung \le 256$). Consider the following algorithms:
- The copiere(a, primul, ultimul) algorithm returns the string consisting of the elements of string *a*, starting from the *primul* position to the *ultimul* position inclusive.
- The egale(a, b, k) algorithm returns True, if strings a and b, both of length k, are identical, and False otherwise.
- The lungime(a) algorithm returns the length of string a.
- The concatenare(a, b) algorithm returns the string obtained by concatenating string a with string b, in this order.

State which of the following algorithms returns the value True if string r can be obtained by rotating string s 0, 1, or more times. For example, the string "abcde" can be obtained by rotating the string "cdeab".

```
B.
A.
     Algorithm check(s, r, Lung):
                                                                     Algorithm check(s, r, Lung):
          For i ← 1, Lung execute
                                                                         ss ← concatenare(s, s)
               If egale(s, r, Lung) then
                                                                         i ← 1
                   Return True
                                                                         sf \leftarrow Lung + 1
               EndIf
                                                                         While i ≤ sf execute
                                                                              k ← i
               aux \leftarrow s[1]
                                                                              j ← 1
               For j \leftarrow 2, Lung execute
                                                                              While j \le Lung \ AND \ ss[k] = r[j] \ execute
                   s[j-1] \leftarrow s[j]
               EndFor
                                                                                   j ← j + 1
               s[Lung] ← aux
                                                                                   k \leftarrow k + 1
          EndFor
                                                                              EndWhile
          Return False
                                                                              If j > Lung then
      EndAlgorithm
                                                                                   Return True
                                                                              EndIf
                                                                              i \leftarrow i + 1
                                                                          EndWhile
                                                                          Return False
                                                                     EndAlgorithm
C.
                                                              D.
     Algorithm check(s, r, Lung):
                                                                     Algorithm check(s, r, Lung):
          ss ← concatenare(r, s)
                                                                         pos1 ← 1
          i ← 1
                                                                         ok ← False
          While i ≤ Lung execute
                                                                         While r[pos1] ≠ s[1] execute
              k ← i
                                                                              pos1 \leftarrow pos1 + 1
              j ← 1
                                                                          EndWhile
               While j \le Lung \ AND \ ss[k] = r[j] \ execute
                                                                          If pos1 > 0 then
                   j ← j + 1
                                                                              ok ← egale(s, r, Lung)
                   k \leftarrow k + 1
                                                                         EndIf
               EndWhile
                                                                          If NOT ok then
               If j > Lung then
                                                                              pos2 \leftarrow Lung - pos1 + 1
                   Return True
                                                                              ok \leftarrow (r[1] = s[pos2])
               EndIf
                                                                              ss ← copiere(s, pos2, Lung)
               i \leftarrow i + 1
                                                                              rr ← copiere(r, 1, pos1)
          EndWhile
                                                                              ok ← ok AND egale(rr, ss, lungime(ss))
          Return False
                                                                          EndIf
      EndAlgorithm
                                                                          Return ok
                                                                     EndAlgorithm
```

22. Consider the algorithm ceFace(a, n) where n is a natural number $(2 < n \le 10^4)$ and a is an array of n natural numbers $(a[1], a[2], ..., a[n], 0 \le a[i] \le 10^4$ for i = 1, 2, ..., n).

We consider the algorithm nrPalindromuri(b, p, r), where b is an array of m natural numbers $(b[1], b[2], ..., b[m], 0 \le b[j] \le 10^4$ for $j = 1, 2, ..., m, 2 < m < 10^4$). The parameters p and r are natural numbers such that $1 \le p < r \le m$. The nrPalindromuri(b, p, r) algorithm returns the number of palindrome numbers in the b[p], ..., b[r] subarray of array b.

```
Algorithm ceFace(a, n):
     b \leftarrow 0; c \leftarrow b; e \leftarrow 0; d \leftarrow 0
     For i \leftarrow 1, n - 2 execute
          If nrPalindromuri(a, i, i + 2) > 1 then
               If c = 0 then
                     d \leftarrow i
               EndIf
               c ← c + 1
          Else
               If c > b then
                     b \leftarrow c; e \leftarrow d
               EndIf
               c ← 0
          EndIf
     EndFor
     If c > b then
          b \leftarrow c; e \leftarrow d
     EndIf
     If b = 0 then
          Write 0, " ", 0
          Write e, " ", e + b + 1
     EndIf
EndAlgorithm
```

Which of the following statements are true?

- A. If in the case of an array of length 10⁴ the value 7381 7384 is displayed, it follows that among the 4 numbers located in the array in the range of positions [7381, ..., 7384] there are exactly two palindrome numbers.
- B. If n = 12 and a = [11, 33, 45, 103, 121, 343, 33, 99, 100, 22, 44, 45] the ceFace(a, n) algorithm displays: 5 8
- C. If at the end of the execution of the algorithm the value of b is 0, it follows that in array a there is no palindrome number.
- D. If n = 12 and a = [11, 33, 45, 103, 121, 343, 33, 99, 100, 22, 44, 45] the ceFace(a, n) algorithm displays: 4 12

23. Consider algorithm fun(a, b, len), where len is a natural number $(1 \le len \le 100)$, and a and b are two arrays having the same length len ($a[1], a[2], ..., a[len], b[1], b[2], ..., b[len], <math>1 \le a[i], b[i] \le len$, i = 1, 2, ..., len).

```
Algorithm fun(a, b, len):

For i ← 1, len execute

k ← a[b[i]]

a[b[i]] ← b[a[i]]

b[a[i]] ← k

EndFor

EndAlgorithm
```

Let len = 7, a = [6, 2, 5, 4, 1, 3, 4] and b = [1, 2, 3, 5, 6, 4, 4]. In the two arrays, before the execution of the algorithm fun(a, b, len) there are two elements having the same value, located on identical positions (a[2] = b[2] and a[7] = b[7])).

Which of the following statements are true following the call fun(a, b, len)?

- A. Arrays a and b will have identical elements at positions 3 and 6.
- B. Arrays a and b will each have three elements having the same value, located on identical positions.
- C. Array **b** will have the values: [1, 2, 3, 4, 6, 5, 4].
- D. Array *a* will have the values: [4, 2, 6, 3, 6, 1, 4].
- **24.** Consider the algorithm calculeaza(v, b, n, i), where b, n, i are non-zero natural numbers ($1 \le b$, n, $i \le 10^3$), and v is an array of n natural number elements (v[1], v[2], ..., v[n], $0 \le v[i] \le 10^3$, for i = 1, 2, ..., n):

```
Algorithm calculeaza(v, b, n, i):

If b = 0 then
Return True

EndIf

If i = n then
Return False
EndIf

Return calculeaza(v, b - v[i], n, i + 1) OR calculeaza(v, b, n, i + 1)

For which of the following input data does the algorithm return True?

A. v = [3, 1, 7, 4, 2], b = 10, n = 5, i = 1

B. v = [2, 6, 4, 8, 12], b = 12, n = 5, i = 2

D. v = [2, 6, 4, 8, 12], b = 12, n = 5, i = 3

EndAlgorithm

For which of the following input data does the algorithm return True?

A. v = [3, 1, 7, 4, 2], b = 10, n = 5, i = 1

B. v = [2, 6, 4, 8, 12], b = 12, n = 5, i = 3

EndAlgorithm

For which of the following input data does the algorithm return True?
```

BABEŞ-BOLYAI UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Admission Exam – July 19th, 2024 Written Exam for Computer Science GRADING AND SOLUTIONS

DEFAULT: 10 points

1.	ACD	3.75 points
2.	BD	3.75 points
3.	AD	3.75 points
4.	В	3.75 points
5.	BD	3.75 points
6.	AD	3.75 points
7.	C	3.75 points
8.	ABD	3.75 points
9.	A	3.75 points
10.	A	3.75 points
11.	AC	3.75 points
12.	AB	3.75 points
13.	ABD	3.75 points
14.	D	3.75 points
15.	В	3.75 points
16.	CD	3.75 points
17.	AD	3.75 points
18.	AD	3.75 points
19.	C	3.75 points
20.	BD	3.75 points
21.	AB	3.75 points
22.	AD	3.75 points
23.	BCD	3.75 points
24.	ABD	3.75 points