Dr. Némethi András (Rényi Alfréd Matematikai Kutatóintézet, Budapest): Lattice cohomology

2019. február 1-jén, pénteken 12:00 órától a Mathematica épület „pi” termében vendégelőadást tart dr. Némethi András, a budapesti Rényi Alfréd Matematikai Kutatóintézet főkutatója,

Lattice cohomology

címmel.

Abstract: Lattice cohomology associates to a lattice a graded Z[U]-module. Originally it was defined in low dimensional topology in order to establish a combinatorial candidate for the Heegaard Floer homology for graph 3-manifolds. In parallel, another motivation was provided by the theory of complex normal surface singularities (as part of algebraic geometry): it created a bridge between analytic and topological invariants. The talk will start with an elementary construction, and step-by-step we will develop the deeper connections with topology and algebraic geometry.