Dr. Maróti Attila (Rényi Alfréd Matematikai Kutatóintézet, Budapest): Normalizers of primitive permutation groups

2019. január 18-án, pénteken 13:00 órától a Mathematica épület „pi” termében tart előadást dr. Maróti Attila, a budapesti Rényi Alfréd Matematikai Kutatóintézet kutatója,

Normalizers of primitive permutation groups

címmel.

Abstract: Given a transitive permutation group G of degree n. We may consider the normalizer A of G in Sym(n) and ask how big can the index ∣A : G∣ be? The most difficult case is when G is a primitive group. In this situation it is shown that ∣A : G∣ is less than n unless n is 34, 54, 38, 58, or 316. We will also discuss other results of similar flavor for both permutation groups and linear groups. This is joint work with Robert M. Guralnick and László Pyber.