Volume 60, Number 3, September 2015
UNIVERSITATIS
BABEŞ-BOLYAI
MATHEMATICA
Imdat Iscan,
Hermite-Hadamard-Fejer
type inequalities for convex
functions via fractional integrals . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 355
Mehmet Zeki
Sarikaya, Meltem Buyukeken and Mehmet Eyup Kiris, On some
generalized integral
inequalities for φ-convex functions . . . . . . . . . . . . .
. . . . . . . . 367
Arpad Baricz and Tibor K. Pogany, Extension of Karamata
inequality for
generalized inverse trigonometric functions . . . . . . . . . . . . .
. . . . . . . 379
M.K. Aouf, A.O. Mostafa, A.Y. Lashin and B.M. Munassar, On certain subclasses
of meromorphic functions defined by convolution with positive
and fixed second coefficients . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
T. Al-Hawary, B.A. Frasin and M. Darus, On sandwich
theorems
for p-valent functions involving a new generalized differential
operator . . . . . . . . . . 395
Birgul Oner
and Sevtap Sumer Eker, Pascu-type p-valent functions
associated with the
convolution structure . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 403
D. Vamshee Krishna and T.
RamReddy, Second
Hankel determinant
for the class of Bazilevic functions . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 413
Ming Li and Toshiyuki Sugawa,
Some extensions of the Open Door
Lemma . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Aurelian Cernea, On a functional differential
inclusion . . . . . . . . . . . . . . . .
. . . . . . 431
Bendehiba Senoussi
and Mohammed Bekkar, Helicoidal
surfaces
with ΔJr =
Ar in 3-dimensional Euclidean space . . . . . . . . . . . . .
. . . . . . . . . . . . . 437
Zoltan Gabos
and Agnes Mester, Curves
with constant geodesic
curvature in the Bolyai-Lobachevskian plane . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 449
Ioannis K. Argyros
and Santhosh George, A unified local convergence for
Chebyshev-Halley-type
methods in Banach space under weak conditions . . . . . . . . 463
Szilard Nagy, Multiple Stackelberg variational responses
. . . . . . . . . . . . . . . . . . . . 471
Book reviews . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 485