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COMPARATIVE STUDY BETWEEN LEMKE’S METHOD AND THE
INTERIOR POINT METHOD FOR THE MONOTONE LINEAR

COMPLEMENTARY PROBLEM

ADNAN YASSINE

Abstract. In this paper, we present two different methods in order to

solve a monotone linear complementarity problem (LCP ): a simplicial

method (Lemke’s method) related to the Jordan’s pivot and the interior

point method based on the central path. We demonstrate that a quadratic

convex program (QCP ) can be written as a (LCP ) form and, thus, be

solved by means of one of these two methods. We provide numerical sim-

ulations as well as experimental and comparative results regarding these

two methods.

1. Introduction

The introduction of the polynomial-time interior point algorithm in linear

programs by Karmarkar in 1984, has led many authors to generalise this algorithm

in order to solve non-linear optimization problems. Successive works were devoted to

solving the (LCP ) by means of interior point methods (Kojima, Mizuno and Yoshise

[5,6], Gonzaga [4], Bonnans, Gilbert and Lemarechal [2],...). Apparently, these authors

were unaware of a long-time existing tool able to solve the problem (LCP ): the

Lemke’s method, which is based on the principle of the simplex method introduced

by Dantzig in 1951. This method converges with a finite number of iterations when the

problem admits a solution. In the literature, we know that the interior point methods

are very fast and more effective than the methods based on the pivot and especially if
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the problem is of big dimension. This result is completely true if we know the starting

point x0, but in the opposite case (that is if we do not know the initial point x0),

the determination of x0 by the interior point methods represents an inconvenience

for these methods and makes them slow with regard to other algorithms. As it is

well-known, though the interior point methods are robust and rapid, their major

disadvantage is the determination of the initial point. Nevertheless, when a starting

point is given, these methods prove to be the best, with a very fast convergence.

In this paper, we show that, in the particular cases of unknown starting

points, their determination delays significantly the interior point methods and some-

times turns them slower than other classical approaches, when solving a convex qua-

dratic problem. Our study also rivals that the evaluation of the starting point with

Kojima’s approach is expensive, and has been found to slower than Lemke’s swivel-

ling method, which is a simplicial method as pointed out in the literature (e.g. [1],

[7]). We still underline that the interior point method is the best, faster than Lemk’s

method when the starting point is known.

This paper presents the two methods and well as comparative numerical

simulations in order to show the importance (from theoretical and practical points of

view) of the Lemke’s method stability, efficiency and the longevity regarding interior

points algorithms.

In the present paper, we are concerned by solving two important problems of

non-linear optimisation:

1. The monotone linear complementarity problem (LCP )

(LCP ) consists in finding two vectors (x, z) ∈ Rn ×Rn such that

z = Mx + q (1)

x > 0, z > 0 (2)

< x, z >= 0 (3)

where M ∈ Rn×n and < x, z > denotes the scalar product of two vectors

x and z.
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2. The Quadratic Convex Program (QCP )

(QCP ) : Min

{
f(x) =

1
2

< Cx, x > + < d, x >: Ax 6 b

}

where C ∈ Rn×n is symmetric, positive semidefinite matrix, d ∈ Rn, A ∈

Rm×n and b ∈ Rm.

In Section 2, we present Lemke’s method, a simplicial method known in the

literature for solving (LCP ) (Bazaraa, Sherali and Shetty [1], Yassine [7]). We pro-

vide the corresponding algorithm and his convergence theorem. The interior point

algorithm based on the central path and its convergence properties for solving (LCP )

are provided in Section 3. In Section 4, we give the transforming techniques for a qua-

dratic convex program into (LCP ) using the optimality conditions of Kuhn Tucker.

Section 5 is dedicated to high-dimension numerical simulations and comparisons be-

tween numerical predictions of the two methods.

2. Lemke’s method

2.1. Preliminaries. Let xi (resp. zi) be the component number i of vector x (resp.

z). The component xi (resp. zi) is said basic variable if xi > 0 (resp. zi > 0). If xi

(resp zi) is out of base (non-basic variable), then inevitably xi = 0 (resp. zi = 0).

Definition 2.1. A solution (x, z) of (LCP ) is said feasible-complementarity solution,

if it verifies the two following conditions:

• (x, z) is a feasible solution of (1) and (2)

• one and only one component of (xi, zi) is a basic variable for i = 1, ..., n.

We notice that if q > 0, then (x, z) = (0, q) is a solution of (LCP ). On the

opposite, (∃i ∈ {1, ..., n} such that qi < 0), we introduce the column vector e the

components of which are equal to 1, and an artificial variable z0 initialized as:

z0 = max{−qi : 1 6 i 6 n}.
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We consider the new system defined by: Find (x, z, z0) ∈ Rn × Rn × R such

that

(P ′) :


z −Mx− ez0 = 0 (4)

x > 0, z > 0, z0 > 0 (5)

< x, z >= 0. (6)

We notice that x = 0 and z = q + ez0 is a feasible-complementarity solution

of (P ′).

Definition 2.2. (x, z, z0) is said feasible-almost-complementarity of (P ′) if it verifies

the three following conditions:

• (x, z, z0) is a feasible solution of (4) and (5)

• ∃s ∈ {1, ..., n} such that xs and zs are out of basis (xs = zs = 0)

• z0 is a basic variable, and ∀i 6= s, xi or zi is a basic variable.

Remark 2.1. In entering xs or zs in the base, we obtain an adjacent feasible-almost-

complementarity solution. Then, each feasible-almost-complementarity solution ad-

mits two adjacent solutions, one when entering as xs in the basis and the other when

entering as zs.

2.2. Lemke’s algorithm (ALGI). Initialisation stage. If q > 0, we stop:

(x, z) = (0, q) is a solution of (LCP ). Else, we introduce the artificial variable z0, we

represent the problem (P ′) through a table and then, we choose

qs = min{qi : 1 6 i 6 n}.

We update the table by pivoting the line s and the column of z0, zs leaves

the base and z0 enters it, then z0 and zi (for i=1,...,n and i 6= s) are positive (basic

variables). Let us put ys = xs and go to the main stage.

Main stage: This stage is divided into three phases:

Phase 1: Let ds the column which corresponds to the variable ys in the

current table. If ds = 0, we stop: (LCP ) admits no solution. Else, we

determine an index r such that:

q∗r
ds

r

= Min

{
q∗i
ds

i

: ds
i > 0 ∀i = 1, ..., n

}
122



LEMKE’S METHOD AND THE INTERIOR POINT METHOD

(the vector q∗ designates the second member column).

If the basic variable of the line r is z0, then go to Phase 3, else go

to Phase 2.

Phase 2: The basic variable of the line r is, either xk, or zk for some k 6= s.

The variable ys enters the base and the table will define itself

through the pivot of the line r and the column of ys. If the variable, which

has left the base, is zk (resp. xk), we put ys = xk (resp. zk) and return to

Phase 1.

Phase 3: We pivot between the column of ys and the line of z0. Then, z0

leaves the base and ys enters it. We obtain a solution of (LCP ).

2.3. Convergence of Lemke’s method. Let M ∈ Rn×n be a n × n symmetric

matrix and x ∈ Rn be a n-dimensional real vector.

Definition 2.3. 1. M is said copositive if and only if ∀x > 0, xtMx > 0

2. M is said strictly copositive if and only if ∀x > 0, x 6= 0 =⇒ xtMx > 0

3. M is said copositive plus if and only if it verifies the two following condi-

tions:

(i): M is copositive

(ii): x > 0 and xtMx = 0 =⇒ (M + M t)x = 0.

If M is symmetric, the property (ii) becomes:

(ii) x > 0 and xtMx = 0 =⇒Mx = 0.

Theorem 2.1. ([1]) We suppose that each feasible-almost-complementarity solution

of (P ′), is non-degenerated (each basic variable is strictly positive) and that the matrix

M is copositive plus, then the algorithm (ALG1) stops after a finite number of itera-

tions. If the system defined by (1) and (2) is consistent, then the algorithm (ALGI)

stops with an optimal solution of (LCP ), else, we notice that the problem (LCP )

admits no solution.
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Corollary 2.1. If the matrix M admits positive elements and if the diagonal elements

are strictly positive, then the algorithm stops with a feasible complementary basic

solution.

3. Interior point algorithm

3.1. Introduction. We consider the monotone linear complementarity problem as a

standard given by (1), (2) and (3). The set of all the feasible solutions is defined by:

S = {(x, z) ∈ R2n : z = Mx + q, x > 0, z > 0}

and its relative interior

Sint = {(x, z) ∈ S : x > 0, z > 0}.

Then, we suppose that the two following hypotheses are satisfied:

(H1): M is positive semidefinite

(H2): Sint 6= Ø.

The size of problem (LCP ) is defined by ([5]):

L = E

 n∑
i=1

n+1∑
j=1

log(|Mij |+ 1) + log(n2)

+ 1

where M = [M q] and E(u) is the largest integer, not greater than u ∈ R+.

Let H : R+ × R2n
+ → Rn × Rn

(µ, x, z) → H(µ, x, z) = (xz − µe, z −Mx− q)

for every µ > 0 and (x, z) ∈ R2n
+ , we consider the following system of equations:

H(µ, x, z) = 0. (7)

It is obvious that (x, z) is a solution of (LCP ) if and only if it is a solution

of the system (7) for µ = 0. The Newton direction at (x, z) is defined as a solution

(dx, dz) of the system of linear equations: Zdx + Xdz = −xz + µe

dz = Mdx

(8)
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where X = diag(x1, x2, ..., xn) and Z = diag(z1, z2, ..., zn).

By a simple calculation, we obtain: (M + X−1Z)dx = Ze + µX−1e

dz = Mdx.
(9)

Then the new point (x, z) will be given by:

(x, z) = (x + dx, z + dz). (10)

We can easily verify that:

z = Mx + q for any (x, z) ∈ S and any µ > 0. (11)

3.2. Centralisation measures. Note that Scen is the central trajectory of (LCP ):

Scen = {(x, z) ∈ R2n
+ : H(µ, x, z) = 0 for µ > 0}

= {(x, z) ∈ Sint : xz = µe for µ > 0}.

Proposition 3.1. ([5]) If Sint 6= ∅, the system (7) admits a unique solution called

associated center to µ, for every µ > 0.

The algorithms of central trajectory generate a sequence of points (xµ, zµ)

verifying the following system:
z = Mx + q

xz = µe

x > 0 and z > 0.

(12)

In tending µ to 0, (xµ, zµ) tends to a solution (x∗, z∗) of (LCP ) which is

located at the extremity of the central trajectory.

To control the non-linearity of xz, successive points are imposed to stay in

the central trajectory neighbourhood. To evaluate deviation (x, z) ∈ Sint of each

point for the central trajectory, we define a centralisation measure:

δ(x, z) = Min{‖H(µ, x, z)‖ : µ ≥ 0} = Min{‖xz − µe‖ : µ ≥ 0}

= Min

{
xz − (

xtz

n
)e : µ ≥ 0

}
.
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For every point (x, z) ∈ Sint, we get: (x, z) ∈ Sint ⇐⇒ δ(x, z) = 0.

Definition 3.1. Let α > 0. We call α-center neighbourhood, the set

Sα = {(x, z) ∈ Sint : δ(x, z) ≤ xtz

n
α}.

Theorem 3.1. ([5]) Let 0 < α < 0.1 and δ = α
1−α . We assume that (x, z) ∈ Sα and

µ = (1− δ√
(n)

)xtz
n then (x, z), given by (10), verifies:

(x, z) ∈ Sα (13)

(xtz) ≤

(
1− δ

6
√

(n)

)
xtz. (14)

3.3. Interior point algorithm (ALG2).

Initialisation: (see Appendix 1): Let 0 < α < 0.1 and δ = α
1−α .

We suppose that the initial point (x1, z1) ∈ Sint are known, such that

δ(x1, z1) ≤ (x1)tz1

n
α and (x1)tz1 ≤ 20(L), k = 1.

Stage 1: If (xk)tzk ≤ 2−2L, we stop: (x∗, z∗) = (xk, zk) is a solution of

(LCP )

Stage 2: µ = (1− δ√
(n)

) (xk)tzk

n and (x, z) = (xk, zk).

Stage 3: We determine the Newton’s direction (dx, dz) defined by (9) and

(xk+1, zk+1) = (x, z) defined by (10).k ←− k + 1 and return to Stage 1.

Theorem 3.2. ([5,6]) The algorithm (ALG2) generates a sequence (xk, zk) verifying:

(xk, zk) ∈ Sα and (xk+1, zk+1) ≤ (1 − δ

6
√

(n)
)(xk)tzk for k = 1, ..., The

sequence (xk, zk) converges to (x∗, z∗) solution of (LCP ) after, at the most, O(n0.5L)

iterations.

4. Transformation of a convex quadratic program into a monotone linear

complementarity problem

In this paragraph, we firstly present the transformation of convex quadratic

program (based on the optimality conditions of Kuhn Tucker) into a complementarity

linear problem. We distinguish the two following cases, may there be or not positivity

constraints of the variable x components. We also provide the conditions ensuring
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the convergence of Lemke’s algorithm for the solving of these monotone linear com-

plementarity problems.

4.1. Transformation with positivity constraints. Let us consider the following

problem:

(QCP1) : Min{f(x) =
1
2

< x,Cx > + < d, x > : Ax ≤ b, x ≥ 0}

where C ∈ Rn×n is symmetric, positive definite; A ∈ Rm×n; x, d ∈ Rn and b ∈ Rm.

The conditions of Kuhn Tucker’s related to the problem (QCP1) are written

as follows:

x is a solution of (QCP1) if and only if there exists u ∈ Rm and v ∈ Rn such that

(∗) :


Cx + d + Atu− v = 0

< u, b−Ax >=< v, x >= 0

Ax ≤ b, x ≥ 0, u ≥ 0, v ≥ 0.

Let

q =

 b

d

 ∈ Rn+m, z =

 u

x

 ∈ Rn+m and M =

 0 −A

At C

 ∈ R(n+m)×(n+m).

It is readily verified that the quadratic program solving (QCP1) is equivalent

for solving the following linear complementarity problem:

(LCP1) : Find z ∈ R(n+m) such that : z ≥ 0,Mz + q ≥ 0 and zt(Mz + q) = 0.

Theorem 4.1. If C is symmetric, positive definite, then M is copositive plus and

Lemke’s algorithm converges to a solution of (LCP ).

Proof. Let z =

 x

y

 ≥ 0 where x ∈ Rm and y ∈ Rn, then zt = [xt yt] ≥ 0.

ztMz = [xt yt].

 0 −A

At C

 .

 x

y

 = ytCy.

z ≥ 0 =⇒ y ≥ 0 =⇒ yt.C.y ≥ 0 (by assumption, C is symmetric, positive

definite) =⇒ zt.M.z ≥ 0 =⇒M is copositive.
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We have, moreover, M + M t =

 0 0

0 2C

 =⇒ (M + M t)z = 2Cy, then,

zt.M.z = 0 =⇒ yt.C.y = 0 =⇒ C.y = 0 =⇒ (M + M t).z = 0 =⇒ M is copositive

plus.

According to Theorem 2.1, ALG1 converges to a solution of (LCP ). �

4.2. No-constraint transformation of positivity. Considering the following

problem:

(QCP2) : Min{f(x) =
1
2

< x,Cx > + < d, x > : Ax ≤ b

where C ∈ Rn×n symmetric, positive definite; A ∈ Rm×n; x, d ∈ Rn and b ∈ Rm.

Kuhn Tucker’s optimality conditions related to the problem (QCP2) are writ-

ten:

x is a solution of (QCP2) if and only if there exists u ∈ Rm such that

(∗∗) :


Cx + d + Atu = 0

< u, b−Ax >= 0

Ax ≤ b, u ≥ 0

which are equivalent in solving the following LCP :

(LCP2) : Find u ∈ Rm such that : u ≥ 0,Mu + q ≥ 0 and < u,Mu + q >= 0

where M = AC−1At and q = AC−1d + b.

Remark 4.1. • u∗ is a solution of the problem LCP2 if and only if x∗ =

(−C−1Atu∗ − C−1d) is a solution of the problem (QCP2).

• Given that M = M t = AC−1At is positive definite, Lemke’s algorithm

leads to a solution of (LCP2) (then of (QCP2)) or concludes on the vacuity

of the solution set of (LCP2) (consequently that of (QCP2)).

• In case 4.2., the transformation requires that C is positive definite. More-

over, applying Lemke’s algorithm needs to calculate C−1. These are the

drawbacks when solving (QCP2) through Lemke’s algorithm.
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• In case 4.1., such drawbacks do not exist. On the opposite, we have to

work in Rn+m (instead of Rm in 4.2.). Lemke’s algorithm would be more

expensive when n is quite big.

5. Numerical experiments

In this section, we present the comparative numerical results between the two

methods for the (LCP ) problem. The numerical simulations are applied to quadratic

problems. In our numerical applications, the matrix C is always definite positive

(chosen in a random way) to ensure the convergence of Lemke’s method. In the Table

I, the first column represents the problem dimension (M ∈ Rn×n and q ∈ Rn), the

second provides (resp. the third) the CPU calculation time in seconds for the Lemke’s

method to be carried out (resp. interior point algorithm).

N Lemke Interior Point

10 5 23

20 8 34

50 14 56

100 32 148

200 74 289

400 126 518

500 159 665

1000 334 875
Table I. Calculation time of two methods (in seconds).

According to the numerical results, the following remarks can be make:

• Lemke’s method efficiency, stability and robustness compared with the

interior point method, should be underlined.

• The interior point method becomes low for too small values of α (see

Section 3.3.) (lower than 0.01) or too big (upper than 0.08).

• Interior point method difficulty lies in the determination of the initial point

x0 (initial stage).
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• In some cases, and for a fixed value of α, the interior point method diverges

leading to change the α value in order to obtain convergence on an optimal

solution. This numerical instability does not exist in Lemke’s method.

N Interior Point method by knowing the initial point x0

10 1

20 2

50 4

100 9

200 16

400 31

500 42

1000 78
Table II. Calculation time (in second) of the Interior Point Method by Knowing x0.

The result of the table (Table II.) show clearly that if we know x0 then the

interior point method is much faster and more effective than the Lemkes’ method.

Appendix 1

Initialisation. Let

M ′ =

 0 −et

e M

 ∈ R(n+1)×(n+1) and q′ = [q0 q] ∈ R(n+1)

where

q0 =
2L∗.(n + 1)

n2
, L∗ =

n∑
i=1

n+1∑
j=1

log(|Mij |+ 1) + log(n2)) and M = [M q].

We consider the following LCP :

(LCP ′) :


z′ = M ′x′ + q′

x′z′ = 0

(x′, z′) ≥ 0

where (x′, z′) = (x0, x, z0, z) ∈ R2(n+1)
+ .
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Assumptions (H1) and (H2), its size is:

L′ = E(
n+1∑
i=1

n+2∑
j=1

log(|M̃ij |+ 1) + log((n + 1)2)) + 1

where M̃ = [M ′ q′]. Putting

x1
0 = 22L∗, x1 = (

2L∗
n2

).e, z1
0 = x1

0.e + Mx1 + q = 22L∗.e + (
2L∗
n2

).Me + q

x′1 = (x1
0, x

1) and z′1 = (z1
0 , z1)

We denote by S′, S′int, S
′
cen, S′α, the solutions set of (LCP ′), its relative inte-

rior, its central trajectory and its α-center neighbourhood, respectively.

Lemme 5.1. ([5])

1.

0 < (
15
16

.22L∗.e) ≤ 22L∗.(1− 1
n4

).e ≤ z1 ≤ 22L∗.(1 +
1
n4

)e ≤ (
17
16

.22L∗).e

2.

(x′1, z′1) ∈ S′int.

Lemme 5.2. ([5])

1.

(x′1)tz′1 ≤ 22L ≤ 22L′

2.

(x′1, z′1) ∈ S′0.1.

Theorem 5.1. ([5]) Suppose that the (LCP ) has a solution. Then x0 = 0 for any

solution (x0, x, z0, z) of the (LCP ′).

According to Theorem 5.1, (x′1, z′1) can be useful as an initial point to the

algorithm (ALG2). We calculate the solution (x0, x, z0, z) of (LCP ′) such that xtz <

2−2L′
.

If x0 = 0 then (x, z) is a solution of (LCP ), else the above-mentioned theorem

ensures that (LCP ) admits no solution.

131



ADNAN YASSINE

References

[1] Bazaraa, M.S., Sherali, H.D., Shetty, C.M., Nonlinear Programming, Theory and Algo-

rithms, Sec. ed. John Wiley and Sons, New York, 1993.

[2] Bonnans, J.F., Gilbert, J.C., Lemarechal, C., Optimisation Numérique, Aspects
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Université du Havre
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