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NUMERICAL GENERATION OF SYMMETRIC α-STABLE

RANDOM VARIABLES

S. POPA, D. STANESCU, AND S.S. WULFF

Abstract. The paper discusses two extensions to higher order of the fast,

accurate algorithm due to Mantegna [9] for the numerical generation of

symmetric α-stable random variables. These extensions result in improved

computing time over the most usual range of the index of stability, α > 1,

for which expectations exist.

1. Introduction

Lévy processes are a class of stochastic processes which enjoy a rich mathe-

matical structure and are increasingly used in applications ranging from finance [3]

to the study of non-Fickian diffusion in physical systems [8]. Since exact solutions to

stochastic differential equations (SDEs) driven by Lévy noise are not usually available,

the numerical approximation of such SDEs is often needed. When the path of the Lévy

process has to be constructed explicitly, i.e. in the case of strong approximation, the

numerical generation of a large number of random variables with the corresponding

Lévy distribution is necessary. Even more so, in numerical approximations of some

integro-differential nonlinear partial equations of evolution based on the interacting

particles approximation [14], the position of each particle is governed by a SDE driven

by Lévy noise, hence a system of SDEs of size equal to the number of particles must

be integrated numerically. In such a case, the use of a fast and accurate algorithm for

the generation of these random variables (which represent discrete approximations to

the time increments of the stochastic process) is crucial if reliable numerical results

are to be obtained in a convenient time frame.
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A first numerical algorithm for the generation of random variables with a gen-

eral Lévy distribution, including those with skewness, has been presented by Cham-

bers, Mallows and Stuck [4]. More recently, Mantegna [9] devised a different numerical

method for the class of symmetric α-stable Lévy distributions based on the asymptotic

expansion of the integral expression of their probability density function. Mantegna’s

algorithm makes use of the generalized version of the central limit theorem together

with a nonlinear transformation to achieve an accurate approximation of the prob-

ability density function. However, the use of the generalized central limit theorem

by this latter algorithm implies summation of several independent realizations of a

random variable with a probability distribution close to the targeted distribution.

Although the number of these samples is reduced by a nonlinear transformation, the

generation of several independent samples reduces the efficiency of the algorithm.

In this paper, we propose a new algorithm for the numerical generation of α-

stable random variables. It is based, as Mantegna’s algorithm [9], on the asymptotic

expansion of the probability density function, but to the next higher order. The use

of the higher-order term introduces some complications in the evaluation of the as-

sociated probabilities, which could not be surmounted analytically so that numerical

approximations were needed. The paper is organized as follows. The next two sec-

tions briefly recall the basic properties of symmetrical Lévy α-stable random variables

that we need and the algorithm due to Mantegna. Section 4 develops our proposed

algorithm, while the last section presents pertinent numerical results comparing the

algorithms. A brief conclusion section ends the paper.

2. Symmetric α−stable distributions

We recall that a univariate random variable Z has a (strictly) stable distri-

bution if for any a, b > 0 there exists c > 0 such that aZ1 + bZ2
d
= cZ, where Z1 and

Z2 are independent copies of Z, and
d
= denotes equality in distribution. For given

α, the distribution of Z is called symmetric α-stable if it equals the distribution of

−Z, and in this case its probability density function (PDF) can be expressed as the

improper integral
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fα,γ
Z (z) =

1

π

∞
∫

0

exp(−γqα) cos (qz) dq, 0 < α ≤ 2 (1)

The parameter α is known as the index of stability, or characteristic exponent, of the

distribution, while γ is a scale factor (γ > 0). For α = 2, α = 1 and α = 1/2, the

Gauss, Cauchy and Lévy distributions are obtained, respectively.

Humbert [5] discusses the problem of representing the derivative of e−qα

as

a Laplace integral. His result leads to the following expression for fα,γ
Z (z):

fα,γ
Z (z) = −

1

π

N
∑

k=1

(−1)
k

k!

Γ (αk + 1)

zαk+1
sin

(

kπα

2

)

+ R(z) (2)

where Γ(z) is the gamma function and R(z) = O
(

z−α(N+1)−1
)

. From (2), one can

obtain the two-term asymptotic approximation of a symmetric stable PDF for large

z as a function of the parameter α,

fα,γ
Z (z) ≈

Γ (1 + α) sin(πα/2)

πz1+α
−

Γ (1 + 2α) sin(πα)

πz1+2α
(3)

For more details about stable distributions we refer to [6, 13].

3. Computer generation of symmetric α-stable random variables

While the work of Chambers et al. [4] describes a method for generation of

α-stable random variables with general distributions that may include skewness, a

different approach valid for the symmetric α-stable case was taken by Mantegna [9].

The latter results in an algorithm allowing the generation of a random variable Z

whose probability density is arbitrarily close to the PDF (1) for 0.3 ≤ α ≤ 1.99. The

main idea stems from the generalized central limit theorem: the sum of independent

random variables having the same symmetric α-stable distribution will eventually

converge to a random variable characterized by the same law. Given α, consider the

random variable

V =
X

|Y |
1/α

, (4)

where X and Y are two normal random variables with standard deviation σx and

σy, respectively. One can then choose these values such that the probability density

function of V , fV (v) matches the exact PDF fα,1
Z (z) in the origin and for large values
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of z. To obtain better results, one can then generate a number of independent copies

of V , say V1, V2, . . . , Vn, and use the central limit theorem to construct

Z̃ =
1

n1/α

n
∑

k=1

Vk. (5)

The random variable Z̃ may be expected to converge to a symmetric α-stable random

variable. Because the convergence is quite slow, i.e. one needs a relatively large

n in equation (5), Mantegna introduced a nonlinear transformation which gives an

exponential tilt to the distribution of the random variable V by defining a new random

variable,

W = {[K (α) − 1] [exp (− |V | /C (α))] + 1}V, (6)

with parameters K (α) and C (α) determined by requiring

P (W = 0) = fα,1
Z (0) (7)

and respectively

P [W = W (C(α))] = fα,1
Z [W (C(α))] . (8)

A fast convergence toward a stable random variable is then obtained by constructing

Z̃ =
1

n1/α

n
∑

k=1

Wk, (9)

instead of (5). Note that the cost of Mantegna’s algorithm depends on the number n

of samples of the random variable W used in equation (9). Larger values of n make

the algorithm more accurate at the price of generating many copies of W , each of

which requires two samples from a normal distribution.

4. High-Order Algorithm Using Independent Samples

In the following, we propose a new algorithm for the numerical generation of a

symmetric α-stable random variable which has the same starting point as Mantegna’s

algorithm [9], but is much faster for comparable accuracy. Note that one can set γ = 1

for simplicity, since rescaling of the generated random variable is straightforward.

First, consider equation (2) with N = 2 and γ = 1 and let us compute

V1 =
X1

|Y1|
1/α

and V2 =
X2

|Y2|
1/2α

, (10)
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where X1, X2, Y1, Y2 are four independent normal random variables with standard

deviation σx1 , σx2 , σy1 , σy
2

respectively. Using the method of transformations for the

bivariate case, see e.g. [12], the probability densities of the continuous variables V1

and V2 can be found to be

fV1(v1) = 1
πσx1σy1

∞
∫

0

y1/α exp
[

− y2

2σ2
y1

−
v2
1y2/α

2σ2
x1

]

dy,

fV2(v2) = 1
πσx2σy2

∞
∫

0

y1/2α exp
[

− y2

2σ2
y2

−
v2
2y1/α

2σ2
x2

]

dy,

(11)

For large arguments, the above probability densities are very well described

by the asymptotic approximation

fV1(v1 ≫ 0) ≈
α2(α−1)/2σα

x1
Γ((α+1)/2)

πσy1vα+1
1

,

fV2(v2 ≫ 0) ≈
α2(2α+1)/2σ2α

x2
Γ((2α+1)/2)

πσy2v2α+1
2

(12)

and in the origin

fV1(0) =
2(1−α)/2ασ

1/α
y1 Γ((α+1)/2α)

πσx1
,

fV2(0) =
2(1−2α)/4ασ1/2α

y2
Γ((2α+1)/4α)

πσx2
.

(13)

The second step in our algorithm is to compute another random variable V

given by

V = V1 + V2. (14)

The density of the sum of two independent continuous random variables is the con-

volution of their individual densities. Considering, without loss of generality, the

particular case where σy1 = σy
2

= 1, it follows then [12] that the probability density

of the random variable V is given by

fV (v) ≈
∞
∫

−∞

[

∞
∫

0

1
πσx1

s
1
α exp

(

− s2

2 − t2

2σx1
s

2
α

)

ds

]

·

·

[

∞
∫

0

1
πσx2

s
1
2α exp

(

− s2

2 − (v−t)2

2σx2
s

1
α

)

ds

]

dt

(15)
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hence its value at the origin is

fV (0) =
∞
∫

−∞

[

∞
∫

0

1
πσx1

s
1
α exp

(

− s2

2 − t2

2σx1
s

2
α

)

ds

]

·

·

[

∞
∫

0

1
πσx2

s
1
2α exp

(

− s2

2 − t2

2σx2
s

1
α

)

ds

]

dt

(16)

We now obtain values for σx1 and σx2 such that the following conditions are

satisfied simultaneously for a given value of α:

• The approximate PDF matches the exact one in the origin,

fα,1
Z (0) = fV (0) (17)

• The least-squares error in the approximate PDF is minimized over a

bounded interval [−L, L]:

F (σx1 , σx2) =

L
∫

−L

[fα,1
Z (z) − fV (z)]2dz = min . (18)

From these conditions one obtains a system of equations that can be solved numeri-

cally for the values of σx1 , σx2 once α and a value for L are specified.

5. High-Order Algorithm Using Dependency

Another approach which is less computationally expensive but involves some

tedious, albeit straightforward algebraic manipulation, is to reduce the number of

independent normal variables generated in the high-order algorithm. This can be

done as follows. Note that in (10) four independent normal random variables are used,

although there are only two free unknowns. To further reduce the computational cost,

let (10) hold for X1 = X2 = X and Y1 = Y2 = Y , where X, Y are two independent

normal random variables with standard deviation σx, σy respectively. Hence (10) is

equivalent to

V1 =
X

|Y |1/α
and V2 =

X

|Y |1/2α
. (19)

With this choice, the random variables V1 and V2 are dependent, and the joint density

of V1 and V2 becomes more difficult to evaluate. The method of transformations [12]

for the bivariate case will be used again to compute the probability density function
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fV1,V2(v1, v2) of (V1, V2).

Let g(x, y) =
(

x
|y|1/α , x

|y|1/2α

)

= (v1, v2). Note that

g−1(v1, v2) =

(

v2
2

v1
,

(

v2

v1

)2α
)

=

(

x2

|y|1/α
·
|y|1/α

x
,
x2α

|y|
·
|y|2

x2α

)

= (x, |y|).

Therefore, g−1(v1, v2) =

(

v2
2

v1
,
(

v2

v1

)2α
)

. The absolute value of the determinant of the

Jacobian Jg−1 is given by

|Jg−1 (v1, v2)| = abs

∣

∣

∣

∣

∣

∣

∂x
∂v1

∂x
∂v2

∂y
∂v1

∂y
∂v2

∣

∣

∣

∣

∣

∣

= abs

∣

∣

∣

∣

∣

∣

−
v2
2

v2
1

2 v2

v1

v2α
2 (−2αv−2α−1

1 ) 2αv2α−1
2 v−2α

1

∣

∣

∣

∣

∣

∣

= |(−2αv2α+1
2 v−2α−2

1 + 4αv2α+1
2 v−2α−2

1 | = 2α|(v2α+1
2 v−2α−2

1 )|.

Hence, the probability density function fV1,V2(v1, v2) of (V1, V2) is given by

fV1,V2(v1, v2) = 2α|v2α+1
2 v−2α−2

1 |[fX(
v2
2

v1
)fY ((

v2

v1
)2α) + fX(

v2
2

v1
)fY (−(

v2

v1
)2α)].

Next, let {V } to be another random variable given by

V = V1 + V2. (20)

The probability density function of the random variable V is given by (see [12])

fV (v) =
∞
∫

−∞

fV1,V2(w, v − w)dw

= 4α 1
2πσxσy

∞
∫

−∞

|(v − w)2α+1w−2α−2| exp
(

− 1
2σ2

x

(v−w)4

w2 − 1
2σ2

y

(v−w)4α

w4α

)

dw.

(21)

In order to obtain values for σx and σy for a given value of α, one can again impose

conditions similar to those stated in equations (17) and (18). Lastly, let us note

that this use of dependent variables reduces the cost of the algorithm in the previous

section by a factor of two.

6. Numerical tests

Table 1 gives a sample set of values obtained for the two parameters σx1 and

σx2 (independent case) as a function of α, with the choice L = 10.
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α σx1 (α) σx2 (α)

0.7 0.880 0.002

0.8 0.930 0.001

0.9 0.971 0.000

1 1 0.027

1.1 0.951 0.215

1.2 0.855 0.410

1.3 0.800 0.523

1.4 0.729 0.645

1.5 0.610 0.800

1.6 0.396 1.008

1.7 0.280 1.100

1.8 0.110 1.200

1.9 0.001 1.231

Table 1. Values obtained for the parameters σx1 and σx2 as a func-

tion of α.

Probability density functions obtained numerically by the proposed algo-

rithms, as well as by the algorithm due to Mantegna for both n = 1 and n = 10

in equation (9) are compared with the exact density in figures 1 and 2 for α = 1.7

and α = 1.3, respectively. For completeness, we also include results obtained with

the corrected version of the algorithm due to Chambers et al. [4, 13]. In these figures

the dashed lines are the result of the simulation (histograms based on 106 samples),

while the continuous line is the exact Lévy stable distribution, computed from the

integral form evaluated with 20 decimal digits in the symbolic computation package

Maple, see http://www.maplesoft.com. The L2 error in the numerically generated

probability distributions as a function of α, again based on 106 samples, is given in

figure 3, with the actual CPU time needed shown in figure 4. As can be seen, under

this measure, our algorithm offers an accuracy comparable to Mantegna’s method

with n = 10 for a much smaller computational cost.
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Figure 1. Exact and approximate Lévy density with

N = 1, 000, 000 samples for α = 1.7.

(a) Mantegna (n = 1)

(b) Mantegna (n = 10)

(c) Chambers et al. (d) Present
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Figure 2. Exact and approximate Lévy density with

N = 1, 000, 000 samples for α = 1.3.

(a) Mantegna (n = 1)

(b) Mantegna (n = 10)

(c) Chambers et al.

(d) Present
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Figure 3. L2 error as a function of α for Mantegna

(n = 1 and n = 10), Chambers, and the proposed algorithm.
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Figure 4. CPU time required for 106 samples using Mantegna’s

method (n = 1 and n = 10), Chambers, and the proposed algorithm.

116



GENERATION OF STABLE RANDOM VARIABLES

References

[1] Bergström, H., On some expansions of stable distribution functions, Arkiv För Matem-

atik, Band 2, nr. 18, (1952), pp. 375-378.

[2] Brown, G.W., Tukey, J.W., emphSome distribution of Sample Means, The Annals of

Mathematical Statistics, Vol. 17, No. 1 (1946), pp. 1-12.

[3] Brown, R.J., Private Real Estate Investment: Data Analysis and Decision Making,

Academic Press/Elsevier (2004).

[4] Chambers, J.M., Mallows, C.L., Stuck, B.W., A method for Simulating Stable Random

Variables, Journal of the American Statistical Association, Vol. 71, No. 354 (1976), pp.

340-344.

[5] Humbert, P., Nouvelles correspondances symboliques, Bull. Soc. Math. France, Vol. 69,

(1945), pp. 121-129.

[6] Janicki, A., Numerical and statistical approximation of stochastic differential equations

with non-Gaussian measures, Wroclaw, 1996.
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