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A NOTE ON THREE-STEP ITERATIVE METHODS
FOR NONLINEAR EQUATIONS

GRADIMIR V. MILOVANOVIC¢ AND ALEKSANDAR S. CVETKOVIC

Dedicated to Professor Petru Blaga at his 6oth anniversary

Abstract. In this short note we give certain comments and improvements
of some three-step iterative methods recently considered by N.A. Mir and

T. Zaman (Appl. Math. Comput. (2007) doi: 10.1016/j.amc.2007.03.071).

1. Introduction

Very recently, N.A. Mir and T. Zaman [1] have considered three-step quad-

rature based iterative methods for finding a single zero x = « of a nonlinear equation
flx)y=0. (1.1)

All variants of their methods include the formula

— f(@n) [ (xn)
P G A ) ) -

obtained from the rectangular quadrature formula. It is clear that (1.2) reduces to

Newton and Halley method for A = 0 and A = 1/2, respectively.
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As a variant with maximal order of convergence they have proposed the

following three-step method

- 4 f(xn)
o fl(x”)f} ) ()
_ _ Yn Yn
T YT T A () () (13)
(Yo = 20) f(20)

Tl T T ) — 2f(20)

proving that for a sufficiently smooth function f and a starting point zy sufficiently

close to the single zero x = «, this method has eighth order convergence for A = 1/2,
ie.,

€ntl = (*CBCg + cg)ei + 0(62)7

where e,, = x,, — « and

ck;m, k=2,3,.... (1.4)
As we can see this three-step method need six function evaluations per it-
eration: f(z,), f(yn), f(zn), f'(zn), f'(yn), and f"(y,). Without new function
evaluations, in this note we show that the formula
_ f(zn)
F'(Yn) + (20 = yn) " (Yn)

is a much better choice than the third formula in (1.3). In that case the correspond-

Tnt+1 = S(yn7 Zn) = Zn (15)

ing three-step method has tenth order convergence. Moreover, the formula (1.5) is
numerically stable in comparing with the previous one.

The paper is organized as follows. In Section 2 we give certain auxiliary
formulae, which can be used also in other investigations in convergence analysis. The

main results and a numerical example are given in Section 3.

2. Some auxiliary formulae

We suppose that the equation (1.1) has a single zero = « in certain neigh-
borhood U.(a) := (o — e, + €), € > 0, and that the function f is sufficiently
differentiable in U, (). Evidently, f'(«) # 0.
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Let z,, € U.(a) and
€n i =Tp —Q, €,:=Yp—Q, Epn:=2z,—Q.

Using (1.4) it is easy to get the following formula

= en— €2 +2(c3 —c3)ed — (4¢3 — Tezeq + 3ey)ed

+(8¢5 — 20c3¢2 + 10c4co + 6¢2 — 4cs)e?
—[16¢5 — 52c3c3 + 28c4ca + (33¢2 — 13¢5)co — 17czeq + 5egled
+0(el). (2.1)

This formula is an inverse of the well-known Schréder formula (cf. [2, pp. 352-354]).

Therefore, in the case of the Newton method

B (an) = 0 — }f((iz)) (2.2)
we have
en = On(z,)—a
= cge2 —2(c2 —c3)ed + (4¢3 — Tezen + 3ea)el
— (8¢5 — 20c3¢3 4 10cyco + 6¢2 — 4es)ed
+[16¢5 — 52c3c3 + 28¢4c3 + (33¢3 — 13c5)co — 17czeyq + 5egled
+0(el). (2.3)

Also, we need the corresponding expression for

f//(yn) B lf"(a) + f 1(!04) 5+ fl;(!oa) Ae% L

52(yn) = = 7 7 )
21" (Yn 2 a) «Q
I (Yn) f’(a)+f1(')€n+f2(')é%+'“
ie.,
~ 1 1-2cp+23c3én+3-dcge2 +---
02(yn):*' )

2 1+ 2co€, +3c3e2 +---
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where ¢, are defined by (1.4). Tt gives

Coyn) = Ag + A1e, + Age? + Age + -+, (2.4)
where
Ay = c9, Ay =3c3— 20%, Ay = 4c§ — 9c3cy + 6y,
Az = —8ch+ 24c3ck — 16¢4c0 — 9c3 + 10cs,
Ay = 16¢5 — 60czcs + 40cqch + 5(9c5 — 5es)ea + 15(cs — 2¢3¢4),
As = —32c5 + 144csch — 96¢4¢3 4 (60cs — 162¢2)ca + 36(4cscy — cg)ca
+3(9¢3 — 15¢5c3 — 8¢ + Teq),
Ag = 64ch — 336c3c) + 224cqch + 28(18¢2 — 5es)es — 84(6ezeq — cg)ca
—7(27¢3 — 30csc3 — 16¢5 + Ter)ea + T(18cach — ez — 10csc5 + 4eg),
ete.
Now, for the Halley method
)/ (yn
S R — e AU 25)
we have
~ ~ ~ ~ f Yn
€n = q)H(yn) —Q=€n—Ggn (1 + CQ(yn)gn + [02<yn)gn]2 +- ) y  Gn = ,( )
Using (2.1), in this case, we get
bn = (3 —c3)e3 —3(ch —2czca + c4)et 4+ 6(ch — 3each + 2c4co + 3 — c5)En,

—[9¢5 — 37czch + 29cack + 4(7¢ — 5es)ea — 19¢3cq + 10¢6]€8 + O(E).

(2.6)
In our analysis we also need an expansion of f(z,)/f’(yn) in terms of €, (=

Yn — @), where z, — a = é, is given by (2.6). Thus, we have

Fn) | Entcald ezl -
F'yn) ~ 1+2c28, +3c38% + -+

Up =
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ie.,
v = (¢ —c3)ed — (55 — 8czca + 3cq)en
+(16¢5 — 37cacs + 18cqca + 9c3 — 6es)er,
—(40¢5 — 124c3c3 + 69c4c3 — (32¢5 — 69¢3)ca — 32¢3c4 + 10c6)ed
+0(e},). (2.7)

In the case when y,, = ®x(z,) and

— oy — (Tn = yn) f(Yn) (2.8)

T ) — 2f (gn)

we are interested in

ie.,

2 3
(& Co € C3 €
Uy = 22T BT (2.10)
Gt 282+ 3l + e

enteoel +cged 4+

_ _1—1—2(}26n+3036%+'--
14228, +3c382 +---

1+ 2c28, +3cze2 +---]

tn , and s,

where e, = x, — a, €, = Yy, — a, and &, = z, — .

Here, €, = €, — (en, — €,)/(un — 2). According to (2.3) and (2.10) we get
€n = coc3 —c3)et —2(2¢5 — 4csch + cuco + c3)ed

+[10¢5 — 30cscs + 12¢4¢3 + 3e2(6¢5 — c5) — Tezealed

+0(e!). (2.11)

n
For t,, and s,, we obtain

2 3 4 4 2 5
tn, = en+ el + e, + cue, — (2¢5 — 2e3¢5 — c5)el,

+(6¢5 — 1dcscy + degcs + dcien + co)el + O(el) (2.12)
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and
Sn = 14 2cqe, + 3cze? +deged — (265 — 2c3¢3 — 565)6;11
+(4ch — 12¢3¢5 + 4degcl + Aciey + 6cg)ed
—[4c5 — 22¢3¢5 + 16c4¢s — (6cs — 22¢3)c3 — 14czeqcy — Ter)el
+0(ep), (2.13)
respectively.

3. Main results
We consider now the third-step iterative formula given by (2.2), (2.5), and
(1.5), i.e.,

Yn = PN (Zn), 2n=Pu(Yn), ent1=5SWn,2n), n=0,1,..., (3.1)

for finding a simple zero x = « of the equation (1.1).

Theorem 3.1. For a sufficiently differentiable function f in U () and xq sufficiently
close to «, the third-step method (3.1) has tenth order of convergence, i.e.,

ens1 = 3ches(cs — c2)el? +30c5(c2 — ¢3)%ezell + O(el?) (3.2)

where e, = x, — @ and ¢ are given in (1.4).

Proof. According to (3.1) (and (1.5)) we have

o G

entl = Tnt1 — & = S(Yn, 2) — =
where €, = Y — @, én = 2n — o, and Ca(yn) = " (yn)/(2f (yn)). Replacing Ca(y,)
and v, = f(2zn)/f (yn) by the corresponding expressions (2.4) and (2.7), we obtain

~5

ent1 = 3cz(c3 — c2)Ed + (5 + Tezcy — 8cacs — 17c2ca + 1Tczeq)eS + O(E7).

Finally, using (2.3) we get (3.2). O
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In [1] the authors also considered the following three-step method

_ - f(zn)
U= I R
z = — w
' ") = 2f () (3.3)
T+l = Rn — f(Zn)f/(Zn) ’
Pl =S {2 T 2]

with five function evaluations per iteration: f(z,), f(yn), f(zn), f'(zn), and f'(z,).
Their Theorem 3 states that this method has seventh order of convergence for any
value of A. However, the order of convergence is bigger than seven. Namely, we have

the following result:

Theorem 3.2. For a sufficiently differentiable function f in U () and xq sufficiently
close to «, the third-step method (3.3) has eighth order of convergence for any A # 1/2,

except for A = 1/2 when the convergence is of the order nine. Then,

20 2 2.9
ent1 = —2c3c5(c5 —c3)’e,

+ea(c2 — c3)(16c3¢5 — 3cacy — 32¢3c2 + 1legezey + 8c3)el?

+0(elh), (3.4)

where e, = x, — a and ¢k are given in (1.4).
Proof. Using the expansion (2.1) for the Newton correction f(z,)/f (x,) =:
h(ey), we have f(z,)/f'(zn) = h(€,), where €, is given by (2.11). According to (2.9),
for the third formula in (3.3) we get
_ h(en)
€nt+l1 = En — —\ )
1_2)\{h(en) th  Sn }

(3.5)

(en - €n)2 €n — €n
where the expansions for ¢,, and s,, are given by (2.12) and (2.13), respectively. This

gives
ent1 = (L=2XN)c3(c5 — c3)%e} +4c3(c5 — e3) [2(2A — 1)c§ + (4 — 9N)esc3

+(2X = 1)caco + (BA — 1)c3]ed + -
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For A = 1/2 it reduces to (3.4). O
Thus, the computational efficiency of the method (3.3), for A = 1/2, is EFF=

91/5 ~ 1.55185. With the same function evaluations we can get a slightly simpler

method of order nine with the same efficiency.

Theorem 3.3. For a sufficiently differentiable function f in U () and xq sufficiently
close to a, the third-step method

L fw
Yn = n f’(l’n)?
" " flan) = 2f(yn)’ (3.6)
Toi1 = zn— f(Zn)f/(/Zn) : 7
et = 5 Sl PRI L)

has ninth order of convergence, i.e.,

3
202 2,9
€nt1 = _50302(02_03) €n

+2¢5(c5 — ¢3)(6c3c3 — 12¢5¢3 + 3¢ — ey + deacsey)er?

where e, = x, — a and ¢x are given in (1.4).

Proof. Similarly as in the proof of the previous theorem, we have now

_ h(en
€n+l = €n — ( )1 — s,

h(en)—

€n — €En

1-—

N |

instead of (3.5). This gives (3.7). O
The number of function evaluations in (3.6) can be reduced to four if we take

an approximation of f’(z,) in the form

f/(zn) ~ fN/(Zn) = pnf(mn) + an(yn) + Tnf(zn) + wnfl(mn)v
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obtained by the Hermite interpolation (cf. [3, pp. 51-58]), where

p o (yn - Zn)(zn + 2yn - 3In) q . (In - Zn)2
" (mn - yn)z(xn - Zn) ’ " (mn - yn)2(yn - Zn),
_ 32n — 2Yn — Tn _ Yn — %2n
™ = Wy =

(:L‘n _Zn)(yn _Zn)’ Tn _yn.

For a such modified three-step method, in notation (3.6*), the following result holds:
Theorem 3.4. For a sufficiently differentiable function f in U:(a) and xo sufficiently
close to «, the third-step method (3.6™) has eight order of convergence, i.e.,

1
ent1 = (c3—c3)cacaes — 3 [362(@03 + 4ey) — 2¢5(3¢2 + 2¢5)

+c3(3¢3 + deses + 4c3) + 8cpezea(cs — 303)] ed +0(el?),

where e, = x, — a and ¢x are given in (1.4).

The corresponding computational efficiency is now much better, EFF=

81/4 ~ 1.68179.
Example 3.1. Consider the equation
f(z) = ze” —sin®z +3cosz+5 =0,
with a simple zero
o = —1.20764782713091892700941675835608409776023581894953881520592 . ..

In order to show the behavior of three-step methods (1.3), (3.1), (3.3), (3.6)
and (3.6M) we need a multi-precision arithmetics. Starting with zp = —1, we use
MATHEMATICA with 10000 significant digits. The errors e,, = z,, — « are given in Ta-
ble 3.1. Numbers in parentheses indicate decimal exponents. Besides the convergence

order (r) we give also the corresponding computational efficiency (EFF).
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TABLE 3.1. The errors e, =z, —, n =0,1,2, 3,4, in three-step methods

method (1.3) (3.1) (3.3) (3.6) (3.6M)
order r=2_8 r =10 r=9 r=9 r=28

EFF 1.41421 1.46780 1.55185 1.55185 1.68179
n=0 | 2.08(—1) [2.08(—1) 2.08(—1) 2.08(—1) 2.08(—1)
n=1 |—1.05(=5) |3.70(—6) —1.19(=7)  |—9.24(—8) —2.25(—6)
n=2 |—2.87(—40) |5.66(—54) 2.74(—63) 2.15(—64) | —8.57(—46)
n=3 |—8.87(—317) |3.93(=532) || —5.05(—564) |—4.26(—574) |—3.77(—361)
n=4 |—7.48(—2529)[1.02(=5313) | 1.26(—5070)| 2.204(—5161)|—5.32(—2884)
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