STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LII, Number 2, June 2007

INDECOMPOSABLE SUBGROUPS OF TORSION-FREE ABELIAN GROUPS

DUMITRU VĂLCAN

Dedicated to Professor Grigore Călugăreanu on his 60th birthday

Abstract. The present work gives descriptions of some classes of torsionfree abelian groups which have indecomposable subgroups, and for such a group we will present the structure of these subgroups.

All through this paper by group we mean abelian group in additive notation, and we will mark with P the set of all prime numbers, with r(A) - the rank of the group A and with t(A) - the type of A. According to [2,27.4], if a group A is indecomposable, then it is either torsion-free or cocyclic. Since the case of cocyclic groups (so of torsion groups) is well-known, in this paper we will present certain classes of torsion-free abelian groups which have indecomposable subgroups, properly constructing these subgroups.

Let G be a group of rank r and let $L = \{x_i\}_{i \in I}$ be a maximal independent system in G; I is a index set with |I| = r. Then, according to [2,16.1], $\langle L \rangle = \bigoplus_{i \in I} \langle x_i \rangle$. For every $i \in I$, we mark with X_i the pure subgroup of G, generated by $\{x_i\}$. Then, for every $i \in I$, the subgroup X_i is (homogeneous) of rank one and $t(X_i) = t(x_i) = t_i$. Therefore any group of rank r has a completely decomposable subgroup of the same rank. This motivates the study of our problem for completely decomposable groups.

For the beginning we have:

2000 Mathematics Subject Classification. 20K15, 20K20, 20K25, 20K27, 20K30.

Received by the editors: 15.03.2007.

Key words and phrases. indecomposable subgroup, torsion-free abelian group, pure subgroup, completely decomposable group.

Theorem 1. Let $G = \bigoplus_{i \in I} G_i$ be a torsion-free group with the following properties:

1) I is at most countable index set;

2) For every $i \in I$, G_i is a reduced group and $r(G_i) = 1$;

3) There is at most countable set $P_0 = \{p_1, p_2, \dots, p_n, \dots\}$ of distinct prime numbers, with the following properties:

i) for every $p_k \in P_0$, G_k is p_k -divisible,

ii) there is $p_{l_k} \in P_0 \setminus \{p_k\}$ such that G_k is not p_{l_k} -divisible.

Then G has an indecomposable subgroup A with $r(A) = |P_0|$.

Proof. Let G be a group as in the statement. For every $p_k \in P_0$, we consider the groups $E_{p_k} = \langle p_k^{-\infty} g_k \rangle$ and $H_{p_k} = \langle p_k^{-\infty} g_k, p_{l_k}^{-1} \overline{g}_k \rangle$, where $p_{l_k} \in P_0 \setminus \{p_k\}$ and $g_k \in G_k \setminus \{0\}$. Then, for every $p_k \in P_0$, E_{p_k} is a subgroup in H_{p_k} and $r(E_{p_k}) = 1$. Let be $A = \langle \bigoplus_{p_k \in P_0} E_{p_k}, p_{l_1}^{-1} \overline{g}_1 + p_{l_2}^{-1} \overline{g}_2, p_{l_1}^{-1} \overline{g}_1 + p_{l_3}^{-1} \overline{g}_3, \dots, p_{l_1}^{-1} \overline{g}_1 + p_{l_n}^{-1} \overline{g}_n, \dots \rangle$. Then $A \leq \bigoplus_{p_k \in P_0} H_{p_k} \leq \bigoplus_{i \in I} G_i$ and, for every $p_k \in P_0$, neither g_k nor \overline{g}_k is divisible by $p_{l_k} \in P_0 \setminus \{p_k\}$ in A. (1)

Since, for every $p_k \in P_0$, all elements of E_{p_k} are divisible by every power of p_k , and, for every $p_s \in P_0 \setminus \{p_k\}$, E_{p_s} does not contain any such except for 0, it follows that, for every $p_k \in P_0$, E_{p_k} is fully invariant in A. On the other hand, since, for every $p_k \in P_0$, H_{p_k}/E_{p_k} is torsion, it follows that $(\bigoplus_{p_k \in P_0} H_{p_k})/(\bigoplus_{p_k \in P_0} E_{p_k})$ is torsion too. According to [1,1.6.12], it follows that $\bigoplus_{p_k \in P_0} E_{p_k}$ is an essential subgroup of A. (2)

We are going to show that A is indecomposable. In this way we suppose that $A = B \oplus C$. Then, according to [2,9.3], for every $p_k \in P_0$, $E_{p_k} = (E_{p_k} \cap B) \oplus (E_{p_k} \cap C)$. Since each E_{p_k} is indecomposable, it follows that, for every $p_k \in P_0$, either $E_{p_k} \cap B = 0$ or $E_{p_k} \cap C = 0$. So, for every $p_k \in P_0$, either $E_{p_k} \subseteq B$ or $E_{p_k} \subseteq C$. We suppose that there is $k \neq 1$ such that $E_{p_1} \subseteq B$ and $E_{p_k} \subseteq C$. In this case we consider the element $p_{l_1}^{-1}\overline{g}_1 + p_{l_k}^{-1}\overline{g}_k = b + c$, with $b \in B$ and $c \in C$. It follows that $p_{l_k}\overline{g}_1 + p_{l_1}\overline{g}_k = p_{l_1}p_{l_k}(b+c)$, that is $p_{l_k}(\overline{g}_1 - p_{l_1}b) = p_{l_1}(\overline{g}_k - p_{l_k}c) = 0$, which is impossible, according to the statement (1). Therefore, for every $p_k \in P_0$, either $E_{p_k} \subseteq B$ in which case C = 0, or $E_{p_k} \subseteq C$ in which case B = 0, according to the statement (2). It follows that A is indecomposable and since $r(A) = |P_0|$, the theorem is completely proved.

Corollary 2. If $G = \bigoplus_{i \in I} G_i$ is a group which satisfies the conditions from Theorem 1 and the sets I and P_0 are equipotent, then G has indecomposable subgroups of every rank $m \leq r(G)$.

Now we obtain the example 2 from [3,p.123]:

Corollary 3. Let $G = \bigoplus_{i \in I} G_i$ be a group which satisfies the conditions from Theorem 1. If there is $q \in P \setminus P_0$ such that in the condition 3) of Theorem 1, for every $p_k \in P_0$, p_{l_k} may be replaced by q, then G has indecomposable subgroups of every rank $m \leq |P_0|$.

Proof. Keeping the notations from Theorem 1, for every cardinal $m \leq |P_0|$, we consider the indecomposable subgroup $A_m = \langle \bigoplus_{p_k \in P_0^{(m)}} E_{p_k}, q^{-1}(\overline{g}_1 + \overline{g}_2), q^{-1}(\overline{g}_1$

 $\overline{g}_3), \ldots, q^{-1}(\overline{g}_1 + \overline{g}_m) \rangle$, where $P_0^{(m)}$ is a subset of cardinal m of P_0 .

Other consequences of Theorem 1:

Corollary 4. Let $G = \bigoplus_{p \in P} G_p$ be a torsion-free group with the following

properties:

1) For every $p \in P$, G_p is p-divisible and $r(G_p) = 1$;

2) For every $p \in P$, there is a $q_p \in P \setminus \{p\}$ for which G_p is not q_p -divisible.

Then G has indecomposable subgroups of every rank $m \leq r(G)$.

Proof. Let G be a group as in the statement. According to the condition 1), for every $p \in P$, there is a $\overline{g}_p \in G_p$ such that $h_p^{G_p}(\overline{g}_p) = \infty$. From the condition 2) it follows that, for every $p \in P$, there is a $q_p \in P \setminus \{p\}$ for which there is a $g_p \in G_p$ such that $h_{q_p}^{G_p}(g_p) = 1$. Since $r(G_p) = 1$, it follows that \overline{g}_p and g_p are linear dependent; so $h_p^{G_p}(g_p) = \infty$. Now, for every $p_k \in P$, we consider the groups $E_{p_k} = \langle p_k^{-\infty}, g_{p_k} \rangle$ and $H_{p_k} = \langle p_k^{-\infty} g_{p_k}, q_{p_k}^{-1} g_{p_k} \rangle$. Then, for every $p_k \in P$, E_{p_k} is a subgroup of index q_{p_k} in H_{p_k} and $r(E_{p_k}) = 1$. For any cardinal $m \leq r(G)$, we consider the subgroup $A_m = \langle \bigoplus_{p_k \in P^{(m)}} E_{p_k}, q_{p_1}^{-1} g_{p_1} + q_{p_2}^{-1} g_{p_2}, q_{p_1}^{-1} g_{p_1} + q_{p_3}^{-1} g_{p_3}, \dots, q_{p_1}^{-1} g_{p_1} + q_{p_m}^{-1} q_{p_m} \rangle$, where

135

 $P^{(m)}$ is a subset of cardinal m of P. Following the same reasoning as in Theorem 1, we obtain that A_m is indecomposable.

Corollary 5. For every $p \in P$, we consider the group $Q^{(p)}$ of all rational numbers whose denominators are powers of p. Then the group $G = \bigoplus_{p \in P} Q^{(p)}$ has indecomposable subgroups of every rank $m \leq r(G)$.

Proof. For every $p \in P$, $t(Q^{(p)}) = (0, \ldots, 0, \infty, 0, \ldots)$, where ∞ stands at the proper place of the *p*-height h_p . So the group *G* satisfies the conditions from Corollary 4.

Corollary 6. If I is a index set with $|I| \leq |P|$, then the group $Q^* = \bigoplus_I Q$ has indecomposable subgroups of every rank $m \leq |I|$.

From Corollary 3 it follows:

Corollary 7. We consider G a reduced, torsion-free of rank one group, I at most countable index set and let be $G^* = \bigoplus_I G$. If there is a set $P_0 = \{p_1, p_2, \ldots, p_n, \ldots\}$ of distinct prime numbers with the property that, for every $p_k \in P_0$ there is $g_k \in G$ (not necessarily distinct) such that $h_{p_k}^G(g_k) = \infty$, and there is $q \in P \setminus P_0$, for which there is $\overline{g}_k \in G_k$ such that $h_q^G(\overline{g}_k) = 1$, then G has indecomposable subgroups of every rank $m \leq |P_0|$.

One can notice that there is a basic condition in all the cases we have mentioned above: the direct summands of group G have elements of infinite p-height, for certain prime numbers p. Afterwards this condition is replaced by another: the existence of a rigid system in group G. For the beginning we generalize [3,88.3].

Theorem 8. Let be $\{H_i | i \in I\}$ a family of torsion-free groups such that, for every $i \in I$, there is $G_i \leq H_i$, where $\{G_i | i \in I\}$ is a rigid system of groups, with the property that there is a set $P_0 = \{p_i | i \in I\}$ of prime numbers (not necessarily distinct) such that, for every $p_i \in P_0$, there is a $g_i \in G_i$ with $h_{p_i}^{H_i}(g_i) = 1$ and which is not divisible by p_i in G_i . Then the group $H = \bigoplus_{i \in I} H_i$ has indecomposable subgroups of every rank $m \leq |I|$.

Proof. Let *m* be any cardinal, $m \leq |I|$ and let $I^{(m)}$ be a subset of cardinal *m* of *I*. According to the hypothesis, for every $i \in I$, there is a $p_i \in P_0$ for which

INDECOMPOSABLE SUBGROUPS OF TORSION-FREE ABELIAN GROUPS

there is a $g_i \in G_i$ which is not divisible by p_i in G_i . Now we consider the subgroup $A_m = \langle \bigoplus_{i_j \in I^{(m)}} G_{i_j}, p_{i_1}^{-1}g_{i_1} + p_{i_2}^{-1}g_{i_2}, p_{i_1}^{-1}g_{i_1} + p_{i_3}^{-1}g_{i_3}, \dots, p_{i_1}^{-1}g_{i_1} + p_{i_m}^{-1}g_{i_m} \rangle$ of H. Then, for every $p_i \in P_0$, g_i is not divisible by p_i in A. Since $\{G_i | i \in I\}$ is a rigid system of groups, for every $i \in I$, G_i is fully invariant in H; so, for every $i \in I$, G_i is fully invariant in A_m . We suppose that $A_m = B_m \oplus C_m$. Then, for every $i_j \in I^{(m)}$, $G_{i_j} = (G_{i_j} \cap B_m) \oplus G_{i_j} \cap C_m)$. Since each G_{i_j} is indecomposable, it follows that, for every $i_j \in I^{(m)}$, either $G_{i_j} \cap B_m = 0$ or $G_{i_j} \cap C_m = 0$. So, for every $i_j \in I^{(m)}$, either $G_{i_j} \subseteq C_m$. We suppose that there is $j \neq 1$ such that $G_{i_1} \subseteq B_m$ and $G_{i_j} \subseteq C_m$. In this case we consider the element $p_{i_1}^{-1}g_{i_1} + p_{i_j}^{-1}g_{i_j} = b_m + c_m$, with $b_m \in B_m$ and $c_m \in C_m$. It follows that $p_{i_1}|g_{i_1}$ and $p_{i_j}|g_{i_j}$ in A_m , which is impossible, according to the hypothesis. Therefore, for every $i_j \in I^{(m)}$ either $G_{i_j} \subseteq B_m$ in which case $B_m = 0$, because $\bigoplus_{i_j \in I^{(m)}} G_{i_j}$ is essential in A_m (in this way it is straightforward to verify that $A_m/(\bigoplus_{i_j \in I^{(m)}} G_{i_j})$ is torsion). It follows that A_m is indecomposable and since $r(A_m) = |I^{(m)}|$, the theorem is completely proved.

An immediate consequence of Theorem 8 is:

Corollary 9. Let $\{H_i | i \in I\}$ be a family of torsion-free groups such that, for every $i \in I$, there is $G_i \leq H_i$, where $\{G_i | i \in I\}$ is a family of reduced of rank one groups, with the property that, for every $i_1, i_2 \in I$, $i_1 \neq i_2$, $t(G_{i_1})$ and $t(G_{i_2})$ are incomparable. Then the group $H = \bigoplus_{i \in I} H_i$ has indecomposable subgroups of every rank $m \leq |I|$.

Proof. According to the hypothesis, $\{G_i | i \in I\}$ is a rigid system of groups and there is a set $P_0 = \{p_i | i \in I\}$ of prime numbers (not necessarily distinct) such that, for every $p_i \in P_0$, there is a $g_i \in G_i$ with $h_{p_i}^{H_i}(g_i) = 1$ and which is not divisible by p_i in G_i . Since |I| = r(G), the statement follows from Theorem 8.

Let $G = B \oplus C$ be any group and A a subgroup of G. According to [2,p.44], there are subgroups B_2, B_1 of B and there are subgroups C_2, C_1 of C such that $B_2 \leq B_1, C_2 \leq C_1, B_1 \oplus C_1$ is the minimal direct sum containing A, and $B_2 \oplus C_2$ is

137

the maximal direct sum contained in A, with components in B, respectively C. So $B_2 \oplus C_2 \leq A \leq B_1 \oplus C_1$ and it is straightforward to verify that A is a subdirect sum of B_1 and C_1 with kernels B_2 , respectively C_2 . Then, according to [2,p.43,44] the following relationships hold:

$$A/(B_2 \oplus C_2) \cong B_1/B_2 \cong C_1/C_2 \tag{3}$$

$$(B_1 \oplus C_1)/A \cong A/(B_2 \oplus C_2) \tag{4}$$

$$A/B_2 \cong C_1 \tag{5}$$

$$A/C_3 \cong B_1. \tag{6}$$

Remark 10. Let $G = B \oplus C$ be any group and A a subgroup of G. If C is free and A is indecomposable, then either r(A) = I or $A \subseteq B$.

Proof. According to the hypothesis, keeping the above notation, C_1 is free. In this case, the relationship (4) and [2,14.4] show that B_2 is a direct summand in A-which is in contradiction to the hypothesis.

Now, we suppose that $G = B \oplus C$ is a torsion-free group, with r(B) = r(C) =1. Then, according to the relationships (3), $B_2 = 0$ if and only if $C_2 = 0$; in this case, according to the condition (4), $(B_1 \oplus C_1)/A \cong A$ - which is impossible, because $(B_1 \oplus C_1)/A$ is torsion and A is torsion-free. Therefore $B_2 \neq 0$ and $C_2 \neq 0$. On the other hand, if $B_1 = B_2$ then $C_1 = C_2$ (see (3)) and in this case $A = B_2 \oplus C_2$.

Of course $B_2 \oplus C_2$ is essential in A $(A/(B_2 \oplus C_2)$ is torsion), $B_2 = B \cap A$, and $C_2 = C \cap A$. It follows that if B_2 is a proper subgroup of B_1 , then also C_2 is a proper subgroup of C_1 and

$$A = \langle B_2 \oplus C_2, a_1, a_2, \ldots \rangle \tag{7}$$

where, for every i = 1, 2, ..., there is a $b_1^i \in B_1 \setminus \{0\}$ and there is a $c_1^i \in C_1 \setminus \{0\}$ such that $a_i = b_1^i + c_1^i$.

Now we can present the structure of indecomposable subgroups of completely decomposable groups of rank 2.

138

INDECOMPOSABLE SUBGROUPS OF TORSION-FREE ABELIAN GROUPS

Theorem 11. Let $G = B \oplus C$ be a torsion-free group with r(B) = r(C) = 1and let A be any subgroup, of the form (7), of G. Then the following statements are equivalent:

a) A is indecomposable;

b) i) for every $a_i \in A \setminus (B_2 \oplus C_2)$, there are $b_2^i \in B_2 \setminus \{0\}$ and $c_2^i \in C_2 \setminus \{0\}$ for which there are the prime numbers p_2^i and q_2^i (not necessarily distinct) such that b_2^i is not divisible by p_2^i in B_2 , c_2^i is not divisible by q_2^i in C_2 and $a_i = (p_2^i)^{-1}b_2^i + (q_2^i)^{-1}c_2^i$;

ii) the subgroups B_2 and C_2 are fully invariant in A.

Proof. In view of Theorem 8, suffice it to show that a) implies b). Let $A = \langle B_2 \oplus C_2, b_1 + c_1, b_2 + c_2, \ldots \rangle$ be a subgroup, of the form (7), of G, where $b_1, b_2, \cdots \in B \setminus B_2$ and $c_1, c_2, \cdots \in C \setminus C_2$. According to the hypothesis, B_2 and C_2 are reduced and not pure in B and C respectively. Let p be a prime number and let $b + c + (B_2 \oplus C_2)$ be an element of order p from $A/(B_2 \oplus C_2)$. Then $pb = x \in B_2$ and $pc = y \in C_2$. If x is divisible by p in B_2 , then $b \in B_2$, what is in contradiction to the hypothesis. It follows that x is not divisible by p in B_2 and $b = p^{-1}x$. Analogously it follows that $c = p^{-1}y$ and the statement i) from point b) is completely proved.

If $b + c + (B_2 \oplus C_2)$ is an element of order p^r , with $r \ge 2$, then we follow the same reasoning.

For the proof of the second statement from point b) we distinguish two cases:

Case 1. $t(B_2)$ and $t(C_2)$ are incomparable. Then this gives the required result.

Case 2. $t(B_2) \leq t(C_2)$. In this case there is a monomorphism $f: B_2 \to C_2$; so $B_2 \cong f(B_2) = B_2^* \leq C_2$. We consider the group $A^* = \langle B_2^* \oplus C_2, a_1^*, a_2^*, \ldots \rangle$, where, for every $i = 1, 2, \ldots$ $a_i^* = (p_2^i)^{-1}(b_2^i)^* + (q_2^i)^{-1}c_2^i$, and $(b_2^i)^* = f(b_2^i) \in B_2^*$; also we consider the subgroup $C_3 = \langle C_2, a_1^*, a_2^*, \ldots \rangle$ of A^* . Then, for every $i = 1, 2, \ldots$ there is $n_i \in N^*$ such that $n_i a_i^* \in C_2$. We are going to show that $A^* = B_2^* \oplus C_3$. Of course $A^* = B_2^* + C_3$. Let a^* be any element from A^* . We suppose that there are $x^*, y^* \in B_2$ and there are $u, v \in C_2$, such that $a^* = x^* + u + a_i^* = y^* + v + a_j^*$. Let be $n \in N^*$ such that $n(a_j^* - a_i^*) \in C_2$. Then $n(x^* - y^*) = n(v - u) + n(a_j^* - a_i^*) = 0$. Since G is torsion-free, it follows that $x^* = y^*$ and $u + a_i^* = v + a_j^*$, that is a^* may be written in 139

a unique way of the form $b^* + c$, with $b^* \in B_2^*$ and $c \in C_3$. Since $A \cong A^*$, it follows that A is completely decomposable, what is in contradiction to the hypothesis.

From Remark 10 or Theorem 11 we obtain:

Corollary 12. If B is a torsion-free of rank one group, then the group $G = B \oplus Z$ has no indecomposable subgroups of rank 2.

Proof. If G is a group as in the statement, then there is no direct sum in G which is not made up of fully invariant direct summands. Now the statement follows from Theorem 11.

References

- Călugăreanu, G., Introduction to Abelian Groups Theory, Editura Expert, Cluj-Napoca, 1994.
- [2] Fuchs, L., Infinite Abelian Groups Theory, Vol.I, Academic Press, New York and London, Pure and Applied Mathematics, 36, 1970.
- [3] Fuchs, L., Infinite Abelian Groups Theory, Vol.I-II, Academic Press, New York and London, Pure and Applied Mathematics, 36, 1973.

BABEŞ-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, STR. KOGĂLNICEANU NR.1, RO-400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: tdvalcan@yahoo.ca