On the Existence of Isotone Galois Connections between Preorders

F. García-Pardo **I.P. Cabrera** P. Cordero M. Ojeda-Aciego F. Rodríguez

> Department of Applied Mathematics University of Málaga, Spain

ICFCA 2014 Cluj Napoca, June 10–13, 2014

Overline

- Introduction and preliminaries.
- Optimizione in a preordering setting.
- Building adjunctions
- Conclusions and future work

Preliminary definitions and notations

Let $\mathbb{A} = (A, \leq_A)$ be a partially ordered set, $X \subseteq A$, and $a \in A$.

• **Upper bounds** of *X*:

$$UB(X) = \{ u \in A \mid x \leq_A u \text{ for all } x \in X \}$$

• Maximum of X:

$$\max(X) = a$$
 iff $a \in UB(X) \cap X$

• Downward closure of a:

$$a^{\downarrow} = \{ x \in A \mid x \leq_A a \}$$

• Upward closure of a:

$$a^{\uparrow} = \{x \in A \mid a \leq_A x\}$$

Preliminary definitions and notations

A mapping $f: (A, \leq_A) \to (B, \leq_B)$ between partially ordered sets is said to be

• isotone if, for all $a_1, a_2 \in A$,

 $a_1 \leq_A a_2$ implies $f(a_1) \leq_B f(a_2)$

• antitone if, for all $a_1, a_2 \in A$,

$$a_1 \leq_A a_2$$
 implies $f(a_2) \leq_B f(a_1)$

In the particular case in which A = B,

• f is inflationary (also called extensive) if, for all $a \in A$,

 $a \leq_A f(a)$

• f is **deflationary** if, for all $a \in A$,

 $f(a) \leq_A a$

The definition of Adjunction

- Let $\mathbb{A} = (A, \leq_A)$ and $\mathbb{B} = (B, \leq_B)$ be posets, and $f: A \to B$ and $g: B \to A$ be two mappings.
- The pair (f,g) is said to be an **adjunction** or *isotone Galois connection between* \mathbb{A} *and* \mathbb{B} , denoted by

$$(f,g)$$
: $\mathbb{A} \leftrightarrows \mathbb{B}$

if, for all $a \in A$ and $b \in B$, the following condition holds

$$f(a) \leq_B b$$
 if and only if $a \leq_A g(b)$

The mapping f is called **left adjoint** and g is called **right adjoint**.

Basic definitions on preordered sets

A preordered set is a pair (A, \leq_A) where \leq_A is a reflexive and transitive binary relation on A.

Definition

Given a preordered set (A, \leq_A) and a subset $X \subseteq A$,

• Set of **p-maximum** elements of X:

$$p\text{-max}(X) = \{a \in X \mid x \lesssim_A a \text{ for all } x \in X\}$$

• Set of **p-minimum** elements of X

 $p\text{-min}(X) = \{a \in X \mid a \lesssim_A x \text{ for all } x \in X\}$

Notice that p-max(X) (resp., p-min(X)) need not be a singleton because of the absence of antisymmetry.

Characterization of adjunctions

Theorem

Let $\mathbb{A} = (A, \leq_A)$ and $\mathbb{B} = (B, \leq_B)$ be two preordered sets, and $f: A \to B$ and $g: B \to A$ be two mappings. The following statements are equivalent:

$$(f,g) : \mathbb{A} \leftrightharpoons \mathbb{B}.$$

f and *g* are isotone maps,
g ∘ *f* is inflationary, and *f* ∘ *g* is deflationary.

$${old 0}~~f(a)^{\uparrow}=g^{-1}(a^{\uparrow})$$
 for all $a\in A$.

$${f 0}~~g(b)^{\downarrow}=f^{-1}(b^{\downarrow})$$
 for all $b\in B$.

• f is isotone and $g(b) \in p$ -max $f^{-1}(b^{\downarrow})$ for all $b \in B$.

() g is isotone and $f(a) \in p$ -min $g^{-1}(a^{\uparrow})$ for all $a \in A$.

P-kernel relation

- Let A = (A, ≲_A) be a preordered set. The symmetric kernel is the equivalence relation ≈_A defined as follows: for a₁, a₂ ∈ A,
 - $a_1 \approx_A a_2$ if and only if $a_1 \lesssim_A a_2$ and $a_2 \lesssim_A a_1$
- Given a mapping f: A → B the kernel relation ≡_f is defined as follows: for a₁, a₂ ∈ A,

$$a_1 \equiv_f a_2$$
 if and only if $f(a_1) = f(a_2)$

P-kernel relation

The **p-kernel** relation \cong_A is the equivalence relation obtained as the transitive closure of the union of the relations \approx_A and \equiv_f .

 $\cong_A = (\approx_A \cup \equiv_f)^{tr}$

Hoare preorder

Definition

Let (A, \leq_A) be a preordered set, and consider $X, Y \subseteq A$.

 $X \sqsubseteq Y$ iff for all $x \in X$, there exists $y \in Y$ such that $x \leq y$.

Lemma

Let (A, \leq) be a preordered set, and consider $X, Y \subseteq A$ such that $p\text{-min}(X) \neq \emptyset$ and $p\text{-min}(Y) \neq \emptyset$. The following statements are equivalent:

- So For all $x \in p\text{-min}(X)$ and for all $y \in p\text{-min}(Y)$, $x \leq y$.

Building adjunctions on posets

Theorem (García et al, IPMU14)

Let (A, \leq_A) be a poset and $f : A \rightarrow B$. There exist an ordering \leq_B in B and a mapping $g : B \rightarrow A$ such that $(f, g) : A \rightleftharpoons B$ if and only if

- There exists $\max([a]_{\equiv_f})$ for all $a \in A$.
- 2 $a_1 \leq_A a_2$ implies $\max([a_1]_{\equiv_f}) \leq_A \max([a_2]_{\equiv_f})$, for all $a_1, a_2 \in A$.

Conditions for the existence of an adjunction

Let $\mathbb{A} = (A, \leq_A)$ and $\mathbb{B} = (B, \leq_B)$ be two preordered sets and let (f,g): $\mathbb{A} \hookrightarrow \mathbb{B}$. Consider the set S = g(f(A)).

Then, the following conditions hold:

- $(f(a)) \in p-\max[g(f(a))]_{\cong_A}, \text{ for all } a \in A.$
- 2 $g(f(a)) \in p\text{-min}(UB[a]_{\cong_A} \cap S)$, for all $a \in A$.

● If
$$a_1 \leq_A a_2$$
, then
p-min $(UB[a_1]_{\cong_A} \cap S) \sqsubseteq$ p-min $(UB[a_2]_{\cong_A} \cap S)$.

Sufficient conditions to build a right adjoint

Lemma

Let $\mathbb{A} = (A, \leq_A)$ be a preordered set and $f: A \to B$ be an **onto** map. Let $S \subset A$ such that the following conditions hold:

$$S \subseteq \bigcup_{a \in A} \operatorname{p-max}[a]_{\cong_A}$$

2
$$\operatorname{p-min}(UB[a]_{\cong_{\mathcal{A}}} \cap S) \neq \varnothing$$
, for all $a \in A$.

$$If a_1 \leq_A a_2, then p-min(UB[a_1]_{\cong_A} \cap S) \sqsubseteq p-min(UB[a_2]_{\cong_A} \cap S)$$

Then, there exist a preordering \leq_B in B and a map $g: B \to A$ such that $(f,g) : \mathbb{A} \hookrightarrow \mathbb{B}$.

The construction

• Under the previous hypotheses, the preordering relation in *B* is defined as follows:

$$b_1 \lesssim_B b_2$$
 if and only if

there exist $a_1 \in f^{-1}(b_1)$ and $a_2 \in f^{-1}(b_2)$ such that

 $\operatorname{p-min}(UB[a_1]_{\cong_A} \cap S) \sqsubseteq \operatorname{p-min}(UB[a_2]_{\cong_A} \cap S).$

The definition of g: B → A is not unique, because all the functions such that, for all b ∈ B,

 $g(b) \in \operatorname{p-min}(UB[x_b]_{\cong_A} \cap S)$ being $x_b \in f^{-1}(b)$

are suitable to define the adjunction.

Extension from the image set to whole codomain

Consider (A, \leq_A) a preordered set, B a set, and $f: A \rightarrow B$. If there exists an adjunction (f, g'): $(A, \leq_A) := (f(A), \leq_{f(A)})$, then, there exist both a preorder \leq_B on B and an adjunction

$$(f,g)$$
: $(A,\leq_A) \leftrightarrows (B,\leq_B)$

Fix $m \in f(A)$ and choose \leq_B to be the reflexive and transitive closure of the relation $\leq_{f(A)} \cup \{(m, y) \mid y \notin f(A)\}$ and

$$g(x) = egin{cases} g'(x) & ext{if } x \in f(A) \ g'(m) & ext{if } x \notin f(A) \end{cases}$$

Main contribution

Theorem

Let $\mathbb{A} = (A, \leq_A)$ be a preordered set, $f : A \to B$ be a mapping.

Then, there exist a preorder $\mathbb{B} = (B, \leq_B)$ and $g \colon B \to A$ such that $(f,g) \colon \mathbb{A} \leftrightarrows \mathbb{B}$

if and only if

there exists $S \subseteq A$ such that

$$\ \ \, {\sf S}\subseteq \bigcup_{{\sf a}\in {\sf A}} {\rm p}\text{-}{\sf m}{\sf a}{\sf x}[{\sf a}]_{\cong_{{\sf A}}}$$

② p-min($UB[a]_{\cong_A} \cap S$) ≠ Ø, for all $a \in A$.

3 If
$$a_1 \leq_A a_2$$
, then
p-min $(UB[a_1]_{\cong_A} \cap S) \sqsubseteq p$ -min $(UB[a_2]_{\cong_A} \cap S)$.

Conclusions

- We have studied the existence and construction of the adjoint pair to a given mapping *f*, but in the more general framework of preordered sets.
- The absence of antisymmetry makes both the statements and the proofs of the results to be much more involved than in the ordered setting.
- Contrariwise to the partially ordered case, given a preordered set A = (A, ≲_A) and an onto mapping f : A → B, the unicity of neither the preordering ≲_B nor the mapping g : B → A satisfying (f,g): A ⇔ B, when it exists, can be guaranteed.

Future work

- Alternative approaches to this problem in order to obtain, if possible, a simpler alternative characterization.
- Possible applications to generalizations in FCA which weaken the structure on which a Galois connection is defined and to knowledge discovery.
- Extending the results to a fuzzy setting.

On the Existence of Isotone Galois Connections between Preorders

F. García-Pardo **I.P. Cabrera** P. Cordero M. Ojeda-Aciego F. Rodríguez

> Department of Applied Mathematics University of Málaga, Spain

ICFCA 2014 Cluj Napoca, June 10–13, 2014